
M A N N I N G

Tom Long

Think like a software engineer

302

Code quality
High-quality code helps create high-quality
software. Identifying what we’re fundamen-
tally trying to achieve helps us judge code
quality more objectively.

Layers of abstraction
When code solves one problem at a time, it’s
easier to understand, use, reuse, and test.
Creating clean layers of abstraction is the
key to this.

Errors
Code rarely runs in a perfect environment.
It’s good to think carefully about how things
can go wrong and how the code should
respond.

Avoid surprises
If code does (or returns) something surpris-
ing, other engineers might slip up on it. This
can lead to bugs.

Make code modular
Requirements change all the time. If code is
sufficiently modular, adapting the code to
changing requirements should be easy.

10

2

3 4

1
Part 1: In theory

CONTRACT

!

Part 2: In practice

Part 3: Unit testing

5

7

9

6

8

11

Chapter summaries

UNIT

TESTING

Other engineers and code contracts
To use our code, other engineers need to
correctly understand what it does and how to
call it. A good code contract makes this
unmistakably clear.

Make code readable
If code is hard to understand and make
sense of, other engineers (and your future
self) might misinterpret it and inadvertently
break things.

Make code hard to misuse
If code is easy to misuse, the chances are
that someone will misuse it. This can result
in broken and buggy code.

Make code reusable and generalizable

Unit testing principles
Unit tests are an essential part of writing
good code. Their primary function is to
detect when the code is broken, but there
are a number of principles to consider
beyond just this.

Unit testing practices
There are a number of best practices and
techniques that engineers apply to create
robust, useful, and maintainable unit tests.

The same subproblems often crop up again
and again. If the same code can be reused it
reduces effort and the chances of new bugs
being introduced.

Good Code, Bad Code
Think Like a Software Engineer

ii

Good Code, Bad Code
THINK LIKE A SOFTWARE ENGINEER

TOM LONG

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Senior technical development editor: Al Scherer
PO Box 761 Technical development editor: Mike Jensen
Shelter Island, NY 11964 Review editor: Aleks Dragosavljević

Production editor: Andy Marinkovich
Copy editor: Michele Mitchell
Proofreader: Jason Everett

Technical proofreader: Chris Villanueva
Typesetter and cover designer: Marija Tudor

ISBN 9781617298936
Printed in the United States of America

http://www.manning.com
http://www.manning.com

contents
preface xiii
acknowledgments xiv
about this book xv
about the author xix
about the cover illustration xx

PART 1 IN THEORY .. 1

1 Code quality 3
1.1 How code becomes software 5
1.2 The goals of code quality 8

Code should work 8 ■ Code should keep working 9 ■ Code
should be adaptable to changing requirements 9 ■ Code should
not reinvent the wheel 10

1.3 The pillars of code quality 11
Make code readable 12 ■ Avoid surprises 13 ■ Make code
hard to misuse 15 ■ Make code modular 16 ■ Make code
reusable and generalizable 17 ■ Make code testable and test
it properly 18

1.4 Does writing high-quality code slow us down? 21

2 Layers of abstraction 23
2.1 Nulls and the pseudocode convention in this book 24
v

CONTENTSvi
2.2 Why create layers of abstraction? 25
Layers of abstraction and the pillars of code quality 27

2.3 Layers of code 28
APIs and implementation details 29 ■ Functions 30
Classes 33 ■ Interfaces 41 ■ When layers get too thin 45

2.4 What about microservices? 47

3 Other engineers and code contracts 49
3.1 Your code and other engineers’ code 50

Things that are obvious to you are not obvious to others 51
Other engineers will inadvertently try to break your code 52
In time, you will forget about your own code 52

3.2 How will others figure out how to use your code? 53
Looking at the names of things 53 ■ Looking at the data types
of things 53 ■ Reading documentation 54 ■ Asking you in
person 54 ■ Looking at your code 54

3.3 Code contracts 55
Small print in contracts 56 ■ Don’t rely too much on small
print 58

3.4 Checks and assertions 63
Checks 63 ■ Assertions 65

4 Errors 67
4.1 Recoverability 68

Errors that can be recovered from 68 ■ Errors that cannot be
recovered from 68 ■ Often only the caller knows if an error
can be recovered from 69 ■ Make callers aware of errors they
might want to recover from 70

4.2 Robustness vs. failure 71
Fail fast 71 ■ Fail loudly 73 ■ Scope of recoverability 74
Don’t hide errors 75

4.3 Ways of signaling errors 79
Recap: Exceptions 80 ■ Explicit: Checked exceptions 80
Implicit: Unchecked exceptions 82 ■ Explicit: Nullable return
type 84 ■ Explicit: Result return type 85 ■ Explicit: Outcome
return type 87 ■ Implicit: Promise or future 89 ■ Implicit:
Returning a magic value 91

4.4 Signaling errors that can’t be recovered from 92

CONTENTS vii
4.5 Signaling errors that a caller might want to recover from 92
Arguments for using unchecked exceptions 93 ■ Arguments
for using explicit techniques 95 ■ My opinion: Use an explicit
technique 98

4.6 Don’t ignore compiler warnings 99

PART 2 IN PRACTICE .. 103

5 Make code readable 105
5.1 Use descriptive names 106

Nondescriptive names make code hard to read 106 ■ Comments
are a poor substitute for descriptive names 106 ■ Solution: Make
names descriptive 108

5.2 Use comments appropriately 108
Redundant comments can be harmful 109 ■ Comments are a
poor substitute for readable code 109 ■ Comments can be great
for explaining why code exists 110 ■ Comments can provide
useful high-level summaries 111

5.3 Don’t fixate on number of lines of code 112
Avoid succinct but unreadable code 113 ■ Solution: Make code
readable, even if it requires more lines 114

5.4 Stick to a consistent coding style 115
An inconsistent coding style can cause confusion 115
Solution: Adopt and follow a style guide 116

5.5 Avoid deeply nesting code 117
Deeply nested code can be hard to read 118 ■ Solution: Restructure
to minimize nesting 118 ■ Nesting is often a result of doing too
much 119 ■ Solution: Break code into smaller functions 120

5.6 Make function calls readable 120
Arguments can be hard to decipher 121 ■ Solution: Use named
arguments 121 ■ Solution: Use descriptive types 122 ■ Sometimes
there’s no great solution 123 ■ What about the IDE? 124

5.7 Avoid using unexplained values 124
Unexplained values can be confusing 125 ■ Solution: Use a well-
named constant 126 ■ Solution: Use a well-named function 126

5.8 Use anonymous functions appropriately 128
Anonymous functions can be great for small things 129
Anonymous functions can be hard to read 129 ■ Solution: Use

CONTENTSviii
named functions instead 130 ■ Large anonymous functions
can be problematic 131 ■ Solution: Break large anonymous
functions into named functions 132

5.9 Use shiny, new language features appropriately 133
New features can improve code 134 ■ Obscure features can be
confusing 134 ■ Use the best tool for the job 135

6 Avoid surprises 137
6.1 Avoid returning magic values 138

Magic values can lead to bugs 138 ■ Solution: Return null, an
optional, or an error 140 ■ Sometimes magic values can happen
accidentally 141

6.2 Use the null object pattern appropriately 144
Returning an empty collection can improve code 144 ■ Returning
an empty string can sometimes be problematic 146 ■ More
complicated null objects can cause surprises 147 ■ A null object
implementation can cause surprises 149

6.3 Avoid causing unexpected side effects 150
Side effects that are obvious and intentional are fine 151
Unexpected side effects can be problematic 151 ■ Solution: Avoid
a side effect or make it obvious 155

6.4 Beware of mutating input parameters 156
Mutating an input parameter can lead to bugs 156 ■ Solution:
Copy things before mutating them 157

6.5 Avoid writing misleading functions 158
Doing nothing when a critical input is missing can cause
surprises 159 ■ Solution: Make critical inputs required 161

6.6 Future-proof enum handling 162
Implicitly handling future enum values can be problematic 163
Solution: Use an exhaustive switch statement 164 ■ Beware
of the default case 166 ■ Caveat: Relying on another project’s
enum 168

6.7 Can’t we just solve all this with testing? 168

7 Make code hard to misuse 170
7.1 Consider making things immutable 171

Mutable classes can be easy to misuse 172 ■ Solution: Set values
only at construction time 174 ■ Solution: Use a design pattern
for immutability 175

CONTENTS ix
7.2 Consider making things deeply immutable 181
Deep mutability can lead to misuse 181 ■ Solution: Defensively
copy things 183 ■ Solution: Use immutable data structures 185

7.3 Avoid overly general data types 186
Overly general types can be misused 186 ■ Pair types are easy to
misuse 189 ■ Solution: Use a dedicated type 191

7.4 Dealing with time 193
Representing time with integers can be problematic 193
Solution: Use appropriate data structures for time 196

7.5 Have single sources of truth for data 199
Second sources of truth can lead to invalid states 199
Solution: Use primary data as the single source of truth 200

7.6 Have single sources of truth for logic 202
Multiple sources of truth for logic can lead to bugs 202
Solution: Have a single source of truth 204

8 Make code modular 207
8.1 Consider using dependency injection 208

Hard-coded dependencies can be problematic 208 ■ Solution: Use
dependency injection 210 ■ Design code with dependency injection
in mind 212

8.2 Prefer depending on interfaces 213
Depending on concrete implementations limits adaptability 214
Solution: Depend on interfaces where possible 214

8.3 Beware of class inheritance 215
Class inheritance can be problematic 216 ■ Solution: Use
composition 220 ■ What about genuine is-a relationships? 223

8.4 Classes should care about themselves 226
Caring too much about other classes can be problematic 226
Solution: Make classes care about themselves 227

8.5 Encapsulate related data together 228
Unencapsulated data can be difficult to handle 228
Solution: Group related data into objects or classes 230

8.6 Beware of leaking implementation details in return
types 232
Leaking implementation details in a return type can be
problematic 232 ■ Solution: Return a type appropriate
to the layer of abstraction 233

CONTENTSx
8.7 Beware of leaking implementation details in
exceptions 234
Leaking implementation details in exceptions can be
problematic 235 ■ Solution: Make exceptions appropriate
to the layer of abstraction 236

9 Make code reusable and generalizable 240
9.1 Beware of assumptions 241

Assumptions can lead to bugs when code is reused 241 ■ Solution:
Avoid unnecessary assumptions 242 ■ Solution: If an assumption
is necessary, enforce it 243

9.2 Beware of global state 246
Global state can make reuse unsafe 247 ■ Solution: Dependency-
inject shared state 250

9.3 Use default return values appropriately 252
Default return values in low-level code can harm reusability 253
Solution: Provide defaults in higher level code 255

9.4 Keep function parameters focused 257
A function that takes more than it needs can be hard to reuse 257
Solution: Make functions take only what they need 259

9.5 Consider using generics 259
Depending on a specific type limits generalizability 260
Solution: Use generics 261

PART 3 UNIT TESTING ... 263

10 Unit testing principles 265
10.1 Unit testing primer 266
10.2 What makes a good unit test? 268

Accurately detects breakages 268 ■ Agnostic to implementation
details 269 ■ Well-explained failures 271 ■ Understandable
test code 272 ■ Easy and quick to run 273

10.3 Focus on the public API but don’t ignore important
behaviors 273
Important behaviors might be outside the public API 274

10.4 Test doubles 279
Reasons for using a test double 279 ■ Mocks 284 ■ Stubs 286
Mocks and stubs can be problematic 288 ■ Fakes 291
Schools of thought on mocking 294

CONTENTS xi
10.5 Pick and choose from testing philosophies 296

11 Unit testing practices 299
11.1 Test behaviors not just functions 300

One test case per function is often inadequate 300 ■ Solution:
Concentrate on testing each behavior 302

11.2 Avoid making things visible just for testing 304
Testing private functions is often a bad idea 305 ■ Solution: Prefer
testing via the public API 307 ■ Solution: Split the code into
smaller units 308

11.3 Test one behavior at a time 312
Testing multiple behaviors at once can lead to poor tests 312
Solution: Test each behavior in its own test case 314
Parameterized tests 316

11.4 Use shared test setup appropriately 317
Shared state can be problematic 318 ■ Solution: Avoid sharing
state or reset it 320 ■ Shared configuration can be
problematic 322 ■ Solution: Define important configuration
within test cases 325 ■ When shared configuration is
appropriate 326

11.5 Use appropriate assertion matchers 328
Inappropriate matchers can lead to poorly explained failures 328
Solution: Use an appropriate matcher 330

11.6 Use dependency injection to aid testability 331
Hard-coded dependencies can make code impossible to test 332
Solution: Use dependency injection 333

11.7 Some final words on testing 334

appendix A Chocolate brownie recipe 337
appendix B Null safety and optionals 338
appendix C Extra code examples 342

index 345

CONTENTSxii

preface
I’ve been coding in one form or another since I was 11 years old, so by the time I
landed my first job as a software engineer, I’d written quite a lot of code. Despite this,
I quickly discovered that coding and software engineering are not the same thing.
Coding as a software engineer meant that my code had to make sense to other people
and not break when they changed things. It also meant that there were real people
(sometimes lots of them) using and relying on my code, so the consequences of things
going wrong were a lot more serious.

 As a software engineer gets more experienced, they learn how the decisions they
make in their everyday coding can have big consequences on whether software will
work properly, keep working properly, and be maintainable by others. Learning how
to write good code (from a software engineering point of view) can take many
years. These skills are often picked up slowly and in an ad hoc way as engineers learn
from their own mistakes or get piecemeal advice from more senior engineers that they
work with.

 This book aims to give new software engineers a jump-start in acquiring these
skills. It teaches some of the most important lessons and theoretical underpinnings of
writing code that will be reliable, maintainable, and adaptable to changing require-
ments. I hope that you find it useful.

xiii

acknowledgments
Writing a book is not a lone effort, and I’d like to thank everyone who had a hand in
bringing this book into reality. In particular, I’d like to thank my development editor,
Toni Arritola, for patiently guiding me through the process of authoring a book, and
for her constant focus on the reader and high-quality teaching. I’d also like to thank
my acquisition editor, Andrew Waldron, for believing in the idea for the book in the
first place and for the many invaluable insights provided along the way. I’d also like to
thank my technical development editor, Michael Jensen, for his deep technical
insights and suggestions throughout the book. And thank you to my technical proof-
reader, Chris Villanueva, for carefully reviewing the code and technical content of the
book, and for all the great suggestions.

 I’d also like to thank all of the reviewers—Amrah Umudlu, Chris Villanueva, David
Racey, George Thomas, Giri Swaminathan, Harrison Maseko, Hawley Waldman,
Heather Ward, Henry Lin, Jason Taylor, Jeff Neumann, Joe Ivans, Joshua Sandeman,
Koushik Vikram, Marcel van den Brink, Sebastian Larsson, Sebastián Palma, Sruti S,
Charlie Reams, Eugenio Marchiori, Jing Tang, Andrei Molchanov, and Satyaki Upad-
hyay—who took the time to read the book at multiple stages throughout its develop-
ment and provide precise and actionable feedback. It’s hard to overstate just how
important and useful this feedback has been.

 Nearly all the concepts in this book are well-established ideas and techniques
within the software engineering community, so as a final acknowledgement I’d like to
say thank you to all those who have contributed to, and shared, this body of knowl-
edge over the years.
xiv

about this book
Good Code, Bad Code introduces key concepts and techniques that professional software
engineers regularly use to produce reliable and maintainable code. Rather than just
enumerating do’s and don’ts, the book aims to explain the core reasoning behind
each concept and technique, as well as any trade-offs. This should help readers
develop a fundamental understanding of how to think and code like a seasoned soft-
ware engineer.

Who should read this book

This book is aimed at people who can already code but who want to improve their
skills at coding as a software engineer in a professional environment. This book will be
most useful to anyone with zero to three years’ experience as a software engineer.
More experienced engineers will probably find that they already know many of the
things in the book, but I hope that they will still find it a useful resource for mentoring
others.

How this book is organized: A roadmap

The book is organized into 11 chapters, spread across three parts. The first part intro-
duces some more theoretical, high-level concepts that shape the way we think about
code. The second part moves onto more practical lessons. Each chapter in part 2 is
split into a series of topics that cover a particular consideration or technique. The
third and final part of the book covers principles and practices that go into creating
effective and maintainable unit tests.

 The general pattern in individual sections of the book is to demonstrate a scenario
(and some code) that can be problematic and to then show an alternative approach
xv

ABOUT THIS BOOKxvi
that eliminates some or all of the problems. In this sense, sections tend to progress
from showing “bad” code to showing “good” code, with the caveat that the terms bad
and good are subjective and context dependent. And as the book aims to emphasize,
there are often nuances and trade-offs to consider, meaning this distinction is not
always clear-cut.

 Part 1, “In theory,” sets the foundations for some overarching and slightly more the-
oretical considerations that shape our approach to writing code as software engineers.

 Chapter 1 introduces the concept of code quality, and in particular a practical set
of goals for what we aim to achieve with high-quality code. It then expands
these into six “pillars of code quality,” which provide high-level strategies that
can be employed in our everyday coding.

 Chapter 2 discusses layers of abstraction, a fundamental consideration that guides
how we structure and split code into distinct parts.

 Chapter 3 highlights the importance of thinking about other engineers who
will have to work with our code. It goes on to discuss code contracts and how
thinking carefully about these can prevent bugs.

 Chapter 4 discusses errors and why thinking carefully about how to signal and
handle them is a vital part of writing good code.

Part 2, “In practice,” covers the first five pillars of code quality (established in chapter
1) in a more practical way with specific techniques and examples.

 Chapter 5 covers making code readable, which ensures that other engineers
will be able to make sense of it.

 Chapter 6 covers avoiding surprises, which minimizes the chance of bugs by
ensuring that other engineers will not misinterpret what a piece of code does.

 Chapter 7 covers making code hard to misuse, which minimizes the chance of
bugs by making it difficult for engineers to accidentally produce code that is
logically wrong or that violates assumptions.

 Chapter 8 covers making code modular, a key technique that helps ensure code
exhibits clean layers of abstraction, and that it will be adaptable to changing
requirements.

 Chapter 9 covers making code reusable and generalization. This makes adding
new functionality or building new features easier and safer by preventing the
need to reinvent the wheel.

Part 3, “Unit testing,” introduces key principles and practices that go into writing
effective unit tests.

 Chapter 10 introduces a number of principles and higher level considerations
that influence how we unit test code.

 Chapter 11 builds on the principles in chapter 10 to provide a number of spe-
cific and practical suggestions for writing unit tests.

ABOUT THIS BOOK xvii
The ideal way to read this book is cover to cover, because the ideas in earlier parts of
the book lay the foundations for subsequent parts. But despite this, the topics in part 2
(and chapter 11) are typically quite self-contained, and each span only a few pages, so
most will be useful even if read in isolation. This is deliberate, with the aim of provid-
ing an effective way to quickly explain an established best practice to another engi-
neer. This is intended to be useful for any engineers wishing to explain a specific
concept in a code review or while mentoring another engineer.

About the code

The book is aimed at engineers who code in a statically typed, object-oriented pro-
gramming language, such as one of the following: Java, C#, TypeScript, JavaScript
(ECMAScript 2015 or later with a static type checker), C++, Swift, Kotlin, Dart 2, or
similar. The concepts covered in this book are widely applicable whenever coding in a
language like one of these.

 Different programming languages have different syntaxes and paradigms for
expressing logic and code structure. But in order to provide code examples in this
book, it’s necessary to standardize on some kind of syntax and set of paradigms. For
this, the book uses a pseudocode that borrows ideas from a number of different lan-
guages. The aim with the pseudocode is to be explicit, clear, and easily recognizable to
the greatest number of engineers. Please bear this utilitarian intent in mind; the book
does not aim to suggest that any one language is better or worse than any other.

 Similarly, where there is a trade-off between being unambiguous and being suc-
cinct, the pseudocode examples tend to err on the side of being unambiguous. One
example of this is the use of explicit variable types, as opposed to inferred types with a
keyword like var. Another example is the use of if-statements to handle nulls, rather
than the more succinct (but perhaps less familiar) null coalescing and null condi-
tional operators (see appendix B). In real codebases (and outside of the context of a
book) engineers may wish to place a greater emphasis on succinctness.

liveBook discussion forum

Purchase of Good Code, Bad Code: Think Like a Software Engineer includes free access to a
private web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the author and from other
users. To access the forum, go to https://livebook.manning.com/#!/book/good-code-
bad-code/discussion. You can also learn more about Manning's forums and the rules
of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/#!/book/good-code-bad-code/discussion
https://livebook.manning.com/#!/book/good-code-bad-code/discussion
https://livebook.manning.com/#!/discussion

ABOUT THIS BOOKxviii
How to use the advice in this book

While reading any book or article about software engineering, it’s always worth
remembering that it’s a subjective topic and that the solutions to real-world problems
are rarely clear-cut. In my experience, the best engineers approach everything they
read with a healthy amount of skepticism and a desire to understand the fundamental
thinking behind it. Opinions differ and evolve, and the tools and programming lan-
guages available are constantly improving. Understanding the reasons behind a par-
ticular piece of advice, its context, and its limits are essential for knowing when to
apply it and when to ignore it.

 This book aims to collect a number of useful topics and techniques to help guide
engineers toward writing better code. Even though it’s probably wise to consider these
things, nothing in this book should be considered infallible or applied as a hard-and-
fast rule that can never be broken. Good judgment is an essential ingredient of good
engineering.

Further reading

This book aims to be a stepping stone into the world of coding as a software engineer.
It should give the reader a broad idea of ways to think about code, things that can be
problematic, and techniques for avoiding these problems. But the journey shouldn’t
end here; software engineering is a huge and ever evolving subject area, and it’s highly
advisable to read broadly and to keep up-to date with things. In addition to reading arti-
cles and blogs, some books on the subject that readers may find useful are as follows:

 Refactoring: Improving the Design of Existing Code, second edition, Martin Fowler
(Addison-Wesley, 2019)

 Clean Code: A Handbook of Agile Software Craftsmanship, Robert C. Martin (Pren-
tice Hall, 2008)

 Code Complete: A Practical Handbook of Software Construction, second edition, Steve
McConnell (Microsoft Press, 2004)

 The Pragmatic Programmer: Your Journey to Mastery, 20th anniversary, second edi-
tion, David Thomas and Andrew Hunt (Addison-Wesley 2019)

 Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Rich-
ard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1994)

 Effective Java, third edition, Joshua Bloch (Addison-Wesley, 2017)
 Unit Testing: Principles, Practices and Patterns, Vladimir Khorikov (Manning Publi-

cations, 2020)

about the author
TOM LONG is a software engineer at Google. He works as a tech lead, and among
other tasks, regularly mentors new software engineers in professional coding best
practices.

xix

about the cover illustration
The figure on the cover of Good Code, Bad Code is captioned “Homme Zantiote,” or a
man from the island of Zakynthos in Greece. The illustration is taken from a collec-
tion of dress costumes from various countries by Jacques Grasset de Saint-Sauveur
(1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illus-
tration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sau-
veur’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. In the streets or in the countryside, it was easy to identify where
they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

xx

Part 1

In theory

The world of software engineering is full of advice and opinions on how
best to write code. But life is rarely as simple as just absorbing as many of these as
possible and then following them religiously. For a start, different pieces of
advice from different sources can often contradict one another, so how do we
know which one to follow? But more to the point: software engineering is not an
exact science, and it can’t be distilled down to a set of infallible rules (however
hard we might try). Every project is different, and there are nearly always trade-
offs to consider.

 In order to write good code, we need to apply a sound sense of judgment to
the scenario at hand and be able to think through the consequences (good and
bad) of a particular way of doing something. For this, we need to understand the
fundamentals: What are we actually trying to achieve when we write code? And
what are the high-level considerations that help us get there? Part 1 aims to pro-
vide a solid grounding in these more theoretical aspects of writing good code.

2 CHAPTER

Code quality
You’ve probably used hundreds, maybe even thousands of different pieces of soft-
ware in the past year. Every program installed on your computer, every app on your
phone, and every self-service checkout you’ve had the pleasure of contending
with—we interact with software a lot.

 There are also many pieces of software that we depend on without even neces-
sarily realizing it. We trust our bank, for example, to have a well-behaved backend
system that isn’t going to unexpectedly transfer the contents of our bank account
to someone else, or suddenly decide that we’re in millions of dollars of debt.

This chapter covers
 The reason code quality matters

 The four goals that high-quality code aims to
achieve

 The six high-level strategies we can use to ensure
code is of a high-quality

 How writing high-quality code actually saves time
and effort in the medium to long term
3

4 CHAPTER 1 Code quality
 Sometimes we encounter pieces of software that are an absolute delight to use;
they do exactly what we want, contain very few bugs, and are easy to use. But other
times we encounter pieces of software that are absolutely horrible to use. They are full
of bugs, crash all the time, and are unintuitive.

 Some pieces of software are obviously less critical than others; an app on our
phone containing a bug is probably annoying but not the end of the world. A bug in a
bank’s backend system, on the other hand, has the potential to ruin lives. Even issues
in pieces of software that don’t seem critical can ruin businesses. If users find a piece
of software annoying or difficult to use, then there’s a good chance that they will
switch to an alternative.

 Higher quality code tends to produce software that is more reliable, easier to main-
tain, and less buggy. Many of the principles around increasing code quality are con-
cerned not just with ensuring that software is initially this way, but that it stays this way
throughout its lifetime as requirements evolve and new scenarios emerge. Figure 1.1
illustrates some of the ways in which code quality can affect the quality of the software.

Figure 1.1 High-quality code maximizes the chance that the software will be reliable, maintainable,
and meet its requirements. Low-quality code tends to do the opposite.

High-quality
code

Low-quality
code

Original software requirementsFully met
Not fully met due to

unhandled edge cases

Minor additional work
required

Major re-engineering and
refactoring requiredA change in requirements

An error occurs System enters undefined state.
Data potentially corrupted.

System recovers or
fails gracefully.

An unforeseen
scenario

Handled despite not having
been explicitly foreseen

System under attack
System stays in safe state.

Not compromised.
System enters undefined state.

Potentially compromised.

The software is unreliable,
 difficult to maintain,

and full of bugs.

The software is reliable,
easy to maintain,

and contains very few bugs.

System enters undefined state.
Data potentially corrupted.

5How code becomes software
Good code is obviously not the only ingredient that goes into making good software,
but it is one of the main ones. We can have the best product and marketing teams in
the world, deploy on the best platforms, and build with the best frameworks, but at
the end of the day everything a piece of software does happens because someone
wrote a piece of code to make it happen.

 The everyday decisions engineers make when writing code can seem small in isola-
tion and sometimes insignificant, but they collectively determine whether a piece of
software will be good or bad. If code contains bugs, is misconfigured, or doesn’t han-
dle error cases properly, then software built from it will likely be buggy and unstable
and probably not do its job properly.

 This chapter identifies four goals that high-quality code should aim to achieve.
This is then expanded into six high-level strategies we can employ in our everyday
work to ensure the code we write is of high quality. Later chapters in this book explore
these strategies in increasing levels of detail, with many worked examples using
pseudocode.

1.1 How code becomes software
Before we delve into talking about code quality, it’s worth briefly discussing how code
becomes software. If you already have familiarity with the software development and
deployment process, then feel free to skip to section 1.2. If you’re someone who
knows how to code but you’ve never worked in a software engineering role before,
then this section should give you a good high-level overview.

 Software is made from code; that much is obvious and doesn’t really need stating.
What can be less obvious (unless you already have experience as a software engineer)
is the process by which code becomes software running in the wild (in the hands of
users, or performing business-related tasks).

 Code generally doesn’t become software running in the wild the moment an engi-
neer writes it. There are usually various processes and checks in place to try and
ensure that the code does what it’s meant to and doesn’t break anything. These are
often referred to as the software development and deployment process.

 We don’t need detailed knowledge of this process for this book to make sense, but
it’ll help to at least know the high-level outline of it. To start, it’s useful to introduce a
few pieces of terminology:

 Codebase—The repository of code from which pieces of software can be built.
This will typically be managed by a version control system such as git, subver-
sion, perforce, etc.

 Submitting code—Sometimes called “committing code” or “merging a pull
request,” a programmer will typically make changes to the code in a local copy
of the codebase. Once they are happy with the change they will submit it to the
main codebase. Note: in some setups, a designated maintainer has to pull the
changes into the codebase rather than the author submitting them.

6 CHAPTER 1 Code quality
 Code review—Many organizations require code to be reviewed by another engi-
neer before it can be submitted to the codebase. This is a bit like having code
proofread; a second pair of eyes will often spot issues the author of the code
missed.

 Pre-submit checks—Sometimes called “pre-merge hooks,” “pre-merge checks,” or
“pre-commit checks,” these will block a change from being submitted to the
codebase if tests fail or if the code does not compile.

 A release—A piece of software is built from a snapshot of the codebase. After var-
ious quality assurance checks, this is then released into the wild. You will often
hear the phrase “cutting a release” to refer to the process of taking a certain
revision of the codebase and making a release from it.

 Production—This is the proper term for in the wild when software is deployed to
a server or a system (rather than shipped to customers). Once software is
released and performing business-related tasks it is said to be running in
production.

There are many variations on the process of how code becomes software running in
the wild, but the key steps in the processes are usually the following:

1 An engineer will work on a local copy of the codebase to make changes.
2 Once they are happy, they will send these changes for a code review.
3 Another engineer will review the code and possibly suggest alterations.
4 Once both the author and the reviewer are happy, the code will be submitted to

the codebase.
5 Releases will be periodically cut from the codebase. The frequency of this can

vary between different organizations and teams (from the order of every few
minutes to the order of every few months).

6 Any tests failing or the code not compiling will either block code from being
submitted to the codebase or block the code from being released.

Figure 1.2 provides an outline of a typical software development and deployment pro-
cess. Different companies and teams all have their own variations on this process, and
the level to which parts of the process are automated can vary enormously.

 It’s worth noting that software development and deployment processes are enor-
mous topics in their own right; many entire books have been written about them.
There are also many different frameworks and ideologies around them, and it’s well
worth reading more about it if you’re interested. This book is not primarily about
these topics, so we won’t cover them in any more detail than we just did. All you need
to know for this book is the rough idea of how code becomes software.

7How code becomes software

Figure 1.2 A simplified diagram of a typical software development and deployment process. The exact
steps and the level of automation can vary greatly between different organizations and teams.

An engineer makes a change
to a local copy of the codebase.

Local copy of
codebase

Code change

Code review

The proposed change to the
codebase is reviewed by

another engineer.

Submitting code

The codebase

Pre-submit checks are run and if they
pass, the code is submitted to the

codebase.

Release

Quality assurrance tests are run,
and if they pass the software

is either

deployed to production servers ...

... or distributed to users.

Reviewer approves.

If reviewer doesn’t approve,
engineer revises their change.

The engineer sends their
change for review.

If pre-submit
checks fail,
engineer fixes
their change.

Releases are periodically
cut from the codebase.

If quality assurance
checks fail

The release is blocked.
An engineer will either fix the problem

or abandon the release.

8 CHAPTER 1 Code quality
1.2 The goals of code quality
If we’re buying a car, quality would probably be one of our primary considerations. We
want a car that

 is safe,
 actually works,
 doesn’t break down, and
 behaves predictably: when we hit the brake pedal, the car should slow down.

If we ask someone what makes a car high quality, one of the most likely answers we’ll
get is that it’s well built. This means that the car was well designed, that it was tested
for safety and reliability before being put into production, and that it was assembled
correctly. Making software is much the same: to create high-quality software, we need
to ensure that it’s well built. This is what code quality is all about.

 The words “code quality” can sometimes stir up connotations of nit-picky advice
about trivial and unimportant things. You’ll no doubt come across this from time to
time, but it’s not actually what code quality is about. Code quality is very much
grounded in practical concerns. It can sometimes be concerned with small details and
sometimes big details, but the aim is the same: creating better software.

 Despite this, code quality can still be a bit of a hard concept to put our finger on.
Sometimes we might see particular code and think, “Yuck” or “Wow, that looks hacky,”
and other times we might stumble across code and think, “This is excellent.” It’s not
always obvious why code invokes these kinds of reactions, and it can sometimes just be
a gut reaction with no real justification.

 Defining code as being high quality or low quality is an inherently subjective and
somewhat judgmental thing. To try to be a bit more objective about it; I personally
find it useful to step back and think about what I’m really trying to achieve when I
write code. Code that helps me achieve these things is high quality in my mind, and
code that hinders these things is low quality.

 There are four high-level goals that I aim to achieve when writing code:

1 It should work.
2 It should keep working.
3 It should be adaptable to changing requirements.
4 It should not reinvent the wheel.

The next few subsections explain these four goals in more detail.

1.2.1 Code should work

This one is so obvious it probably doesn’t need stating, but I’ll go ahead and say it any-
way. When we write code, we are trying to solve a problem, such as implementing a
feature, fixing a bug, or performing a task. The primary aim of our code is that it
should work; it should solve the problem that we intend it to solve. This also implies
that the code is bug free, because the presence of bugs will likely prevent it from work-
ing properly and fully solving the problem.

9The goals of code quality
 When defining what code “working” means, we need to capture all the require-
ments. For example, if the problem we are solving is particularly sensitive to perfor-
mance (such as latency or CPU usage), then ensuring that our code is adequately
performant comes under “code should work,” because it’s part of the requirements.
The same applies to other important considerations such as user privacy and security.

1.2.2 Code should keep working

Code working can be a very transient thing; it might work today, but how do we make
sure that it will still work tomorrow, or in a year’s time? This might seem like an odd
thing to worry about; why would code suddenly stop working? The point is that code
does not live in isolation, and if we’re not careful it can easily break as things around it
change.

 Code likely depends on other code that will get modified, updated, and
changed.

 Any new functionality required may mean that modifications are required to
the code.

 The problem we’re trying to solve might evolve over time: consumer prefer-
ences, business needs, and technology considerations can all change.

Code that works today but breaks tomorrow when one of these things changes is not
very useful. It’s often easy to create code that works but a lot harder to create code
that keeps working. Ensuring that code keeps working is one of the biggest consider-
ations that software engineers face and is something that needs to be considered at all
stages of coding. Considering it as an afterthought or assuming that just adding some
tests later on will achieve this are often not effective approaches.

1.2.3 Code should be adaptable to changing requirements

It’s quite rare that a piece of code is written once and then never modified again. Con-
tinued development on a piece of software can span several months, usually several
years, and sometimes even decades. Throughout this process requirements change:

 Business realities shift.
 Consumer preferences change.
 Assumptions get invalidated.
 New features are continually added.

Deciding how much effort to put into making code adaptable can be a tricky balanc-
ing act. On the one hand, we pretty much know that the requirements for a piece of
software will evolve over time (it’s extremely rare that they don’t). But on the other
hand, we often have no certainty about exactly how they will evolve. It’s impossible to
make perfectly accurate predictions about how a piece of code or software will change
over time. But just because we don’t know exactly how something will evolve doesn’t
mean that we should completely ignore the fact that it will evolve. To illustrate this,
let’s consider two extreme scenarios:

10 CHAPTER 1 Code quality
 Scenario A—We try to predict exactly how the requirements might evolve in the
future and engineer our code to support all these potential changes. We will
likely spend days or weeks mapping out all the ways that we think the code and
software might evolve. We’ll then have to carefully deliberate every minutiae of
the code we write to ensure that it supports all these potential future require-
ments. This will slow us down enormously; a piece of software that might have
taken three months to complete could now take a year or more. And at the end,
it will probably have been a waste of time because a competitor will have beat us
to market by several months, and our predictions about the future will probably
turn out to be wrong anyway.

 Scenario B—We completely ignore the fact that the requirements might evolve.
We write code to exactly meet the requirements as they are now and put no
effort into making any of the code adaptable. Brittle assumptions get baked in
all over the place, and solutions to subproblems are all bundled together into
large inseparable chunks of code. We get the first version of the software
launched within three months, but the feedback from the initial set of users
makes it clear that we need to modify some of the features and add new ones if
we want the software to be successful. The changes to the requirements are not
massive, but because we didn’t consider adaptability when writing the code, our
only option is to throw everything away and start again. We then have to spend
another three months rewriting the software, and if the requirements change
again, we’ll have to spend another three months rewriting it again after that. By
the time we’ve created a piece of software that meets the users’ needs, a com-
petitor has once again beaten us to it.

Scenario A and scenario B represent two opposing extremes. The outcome in both
scenarios is quite bad, and neither is an effective way to create software. Instead, we
need to find an approach somewhere in the middle of these two extremes. There’s no
single answer for which point on the spectrum between scenario A and scenario B is
optimal. It will depend on the kind of project we’re working on and on the culture of
the organization we work for.

 Luckily, there are some generally applicable techniques we can adopt to ensure
that code is adaptable without having to know exactly how it might be adapted in the
future. We’ll cover many of these techniques in this book.

1.2.4 Code should not reinvent the wheel

When we write code to solve a problem, we generally take a big problem and break it
down into multiple smaller subproblems. For example, if we were writing code to load
an image file, turn it into a grayscale image, and then save it again, the subproblems
we need to solve are as follows:

 Load some bytes of data from a file.
 Parse the bytes of data into an image format.
 Transform the image to grayscale.

11The pillars of code quality
 Convert the image back into bytes.
 Save those bytes back to the file.

Many of these problems have already been solved by others; for example, loading
some bytes from a file is likely something that the programming language has built-in
support for. We wouldn’t write our own code to do low-level communication with the
file system. Similarly there is probably an existing library we can pull in to parse the
bytes into an image.

 If we do write our own code to do low-level communication with the file system or
to parse some bytes into an image, then we are effectively reinventing the wheel. There
are several reasons it’s best to make use of an existing solution over reinventing it:

 It saves time and effort—If we made use of the built-in support for loading a file,
it’d probably take only a few lines of code and a few minutes of our time. In
contrast, writing our own code to do this would likely require reading numer-
ous standards documents about file systems and writing many thousands of
lines of code. It would probably take us many days if not weeks.

 It decreases the chance of bugs—If there is existing code somewhere to solve a given
problem, then it should already have been thoroughly tested. It’s also likely that
it’s already being used in the wild, so the chance of the code containing bugs is
lowered, because if there were any, they’ve likely been discovered and fixed
already.

 It utilizes existing expertise—The team maintaining the code that parses some
bytes into an image are likely experts on image encoding. If a new version of
JPEG-encoding comes out, then they’ll likely know about it and update their
code. By reusing their code we benefit from their expertise and future updates.

 It makes code easier to understand—If there is a standardized way of doing some-
thing, then there’s a reasonable chance that another engineer will have seen it
before. Most engineers have probably had to read a file at some point and will
instantly recognize the built-in way of doing that and understand how it func-
tions. If we write our own custom logic for doing this, then other engineers will
not be familiar with it and won’t instantly know how it functions.

The concept of not reinventing the wheel applies in both directions. If another engi-
neer has already written code to solve a subproblem, then we should call their code
rather than writing our own to solve it. But similarly, if we write code to solve a sub-
problem, then we should structure our code in a way that makes it easy for other engi-
neers to reuse so that they don’t need to reinvent the wheel.

 The same classes of subproblems often crop up again and again, so the benefits of
sharing code between different engineers and teams are often realized very quickly.

1.3 The pillars of code quality
The four goals we just looked at help us focus on what we’re fundamentally trying to
achieve, but they don’t provide particularly specific advice about what to do in our
everyday coding. It’s useful to try to identify more specific strategies that will help us

12 CHAPTER 1 Code quality
write code that meets these goals. This book will be centered around six such strate-
gies, which I’ll refer to (in an overly grand way) as “the six pillars of code quality.”
We’ll start with a high-level description of each pillar, but later chapters will provide
specific examples that show how to apply these in our everyday coding.

 The six pillars of code quality:

1 Make code readable.
2 Avoid surprises.
3 Make code hard to misuse.
4 Make code modular.
5 Make code reusable and generalizable.
6 Make code testable and test it properly.

1.3.1 Make code readable

Consider the following passage of text. It’s deliberately hard to read, so don’t waste
too much time deciphering it. Skim read and absorb what you can:

Take a bowl; we’ll now refer to this as A. Take a saucepan; we’ll now refer to this as B.
Fill B with water and place on the hob. Take A and place butter and chocolate into it,
100 grams of the former, 185 grams of the latter. It should be 70% dark chocolate. Place
A on top of B; leave it there until the contents of A have melted, then take A off of B. Take
another bowl; we’ll now refer to this as C. Take C and place eggs, sugar, and vanilla
essence in it, 2 of the first, and 185 grams of the second, and half a teaspoon of the third.
Mix the contents of C. Once the contents of A have cooled, add the contents of A to C and
mix. Take a bowl; we’ll refer to this as D. Take D and place flour, cocoa powder, and salt
in it, 50 grams of the first, 35 grams of the second, and half a teaspoon of the third. Mix
the contents of D thoroughly and then sieve into C. Mix contents of D just enough to fully
combine them. We’re making chocolate brownies by the way; did I forget to mention that?
Take D and add 70 grams of chocolate chips, mix contents of D just enough to combine.
Take a baking tin; we will refer to this as E. Grease and line E with baking paper. Place
the contents of D into E. We will refer to your oven as F. You should have preheated F to
160°C by the way. Place E into F for 20 minutes, then remove E from F. Allow E to cool
for several hours.

Now some questions:

 What is the passage of text about?
 What will we end up with after following all the instructions?
 What ingredients, and how much of them, do we need?

We can find the answer to all these questions in the passage of text, but it’s not easy;
the text has poor readability. There are several issues that make the text less readable,
including the following:

 There is no title, so we have to read the whole passage just to figure out what it
is about.

 The passage is not nicely presented as a series of steps (or subproblems); it is
instead presented as one big wall of text.

13The pillars of code quality
 Things are referred to with unhelpfully vague names, like “A” instead of “the
bowl with melted butter and chocolate.”

 Pieces of information are placed far away from where they’re needed: ingredi-
ents and their quantities are separated, and the important instruction that the
oven needs preheating is only mentioned at the end.

(In case you got fed up and stopped reading the passage of text, it’s a recipe for choc-
olate brownies. There is a more readable version in appendix A in case you actually
want to make them.)

 Reading a piece of badly written code and trying to figure things out is not dissimi-
lar from the experience we just had of reading the brownie recipe. In particular, we
might struggle to understand the following things about the code:

 What it does
 How it does it
 What ingredients it needs (inputs or state)
 What we’ll get after running that piece of code

At some point, another engineer will most likely need to read our code and under-
stand it. If our code has to undergo a code review before being submitted, then this
will happen almost immediately. But even ignoring the code review, at some point
someone will find themselves looking at our code and trying to figure out what it
does. This can happen when requirements change or the code needs debugging.

 If our code has poor readability, other engineers will have to spend a lot of time
trying to decipher it. There is also a high chance that they might misinterpret what it
does or miss some important details. If this happens, then it’s less likely that bugs will
be spotted during code review, and it’s more likely that new bugs will be introduced
when someone else has to modify our code to add new functionality. Everything a
piece of software does happens because of some code that makes it happen. If engi-
neers can’t understand what that code does, then it becomes almost impossible to
make sure the software as a whole will do its job properly. Just like with a recipe, code
needs to be readable.

 In chapter 2, we’ll see how defining the right layers of abstraction can help with
this. And in chapter 5 we’ll cover a number of specific techniques for making code
more readable.

1.3.2 Avoid surprises

Being given a gift on your birthday or winning the lottery are both examples of nice
surprises. When we’re trying to get a specific task done, however, surprises are usually
a bad thing.

 Imagine you’re hungry, so you decide to order some pizza. You get your phone
out, find the number for the pizza restaurant, and hit dial. The line is silent for a
weirdly long period of time but eventually connects and the voice on the other end
asks you what you want.

14 CHAPTER 1 Code quality
 “One large margherita for delivery please.”
 “Uh okay, what’s your address?”
 Half an hour later your order is delivered, you open the bag to find the following

(figure 1.3).

Figure 1.3 If you think you’re talking to a pizza restaurant, when you’re in fact talking to a
Mexican restaurant, your order may still make sense, but you’ll get a surprise when it’s delivered.

Wow, that’s surprising. Obviously someone has mistaken “margherita” (a type of
pizza) for “margarita” (a type of cocktail), but that’s kind of weird because the pizza
restaurant doesn’t serve cocktails.

 It turns out that the custom dialer app you use on your phone has added a new
“clever” feature. The developers of it observed that when users call a restaurant and
find the line busy, 80% of them will immediately call a different restaurant, so they
created a handy, time-saving feature: when you call a number that the dialer recog-
nizes as a restaurant and the line is busy, it seamlessly dials the next restaurant number
in your phone instead.

 In this case that happened to be your favorite Mexican restaurant rather than the
pizza restaurant you thought you were calling. The Mexican restaurant most definitely
does serve margarita cocktails but not pizzas. The developers of the app had good
intentions and thought they were making users’ lives easier, but they created a system
that does something surprising. We rely on our mental model of a phone call to deter-
mine what is happening based on what we hear. Importantly, if we hear a voice answer,
then our mental model tells us we’ve been connected to the number we dialed.

 The new feature in the dialer app modifies the behavior outside of what we would
expect; it breaks our mental model’s assumption that if a voice answers we have been
connected to the number we dialed. It could well be a useful feature, but because its
behavior is outside of a normal person’s mental model, it needs to make explicit what
is happening, like having an audio message that tells us that the number we called is
busy and asking us if we’d like to be connected to another restaurant instead.

CALL

Delicious
Pizza

Deliciou
Pizz “One large margherita

for delivery please.”

“Hello”

“Uh okay, what’s your address?”

...
A margarita cocktail,

instead of a margherita pizza

15The pillars of code quality
 The dialer app is analogous to a piece of code. Another engineer using our code
will use cues such as names, data types, and common conventions to build a mental
model about what they expect our code to take as input, what it will do, and what it
will return. If our code does something outside of this mental model, then it can very
often lead to bugs creeping into a piece of software.

 In the example of calling the pizza restaurant, it seemed like everything was work-
ing even after the unexpected happened: you ordered a margherita and the restau-
rant was happy to oblige. It was only much later, after it was too late to rectify, that you
discovered you had inadvertently ordered a cocktail instead of food. This is analogous
to what often happens in software systems when some code does something surpris-
ing: because the caller of the code doesn’t know to expect it, they carry on unaware. It
will often look like things are fine for a bit, but then later things will go horribly wrong
when the program finds itself in an invalid state or a weird value is returned to a user.

 Even with the best of intentions, writing code that does something helpful or
clever can run the risk of causing surprises. If code does something surprising, then
the engineer using that code will not know or think to handle that scenario. Often this
will cause a system to limp on until some weird behavior manifests far away from the
code in question. This might cause a mildly annoying bug, but it might also cause a
catastrophic problem that corrupts some important data. We should be wary of caus-
ing surprises in our code and try to avoid them if we can.

 In chapter 3, we’ll see how thinking about code contracts is a fundamental tech-
nique that can help with this. Chapter 4 covers errors, which can be a cause of sur-
prises if not signaled or handled appropriately. And chapter 6 looks at a number of
more specific techniques for avoiding surprises.

1.3.3 Make code hard to misuse

If we look at the back of a TV, it will probably look something like figure 1.4. It will
have a bunch of different sockets that we can plug cables into. Importantly, the sock-
ets will have different shapes; the manufacturer of the TV has made it impossible to
plug the power cord into the HDMI socket.

 Imagine if the manufacturer had not done this and had instead made every socket
the same shape. How many people do you think might accidentally end up plugging
cables into the wrong sockets as they are fumbling around at the back of their TV? If
someone plugged the HDMI cable into the power socket, then stuff would probably not

HDMIPOWER

Figure 1.4 The sockets on the back of a TV are deliberately different shapes to
make it hard to plug the wrong cables into the wrong holes.

16 CHAPTER 1 Code quality
work. That would be annoying but not too catastrophic. If someone plugged the power
cable into the HDMI socket though, that might literally cause things to blow up.

 Code we write is often called by other code and is a bit like the back of a TV. We
expect that other code to “plug” certain things in, like input arguments or placing the
system in a certain state before calling. If the wrong things get plugged into our code,
then things might blow up; the system crashes, a database gets permanently cor-
rupted, or some important data gets lost. Even if things don’t blow up there’s a good
chance that the code is not going to work. There was a reason our code got called,
and the incorrect stuff being plugged in might mean that an important task doesn’t
get performed or some weird behavior happens but goes unnoticed.

 We can maximize the chance that code works and stays working by making things
hard or impossible to misuse. There are numerous practical ways of doing this. Chap-
ter 3 covers code contracts, which (similarly to avoiding surprises) is a fundamental
technique that can help make code hard to misuse. Chapter 7 covers a number of
more specific techniques for making code hard to misuse.

1.3.4 Make code modular

Modularity means that an object or system is composed of smaller components that
can be independently exchanged or replaced. To demonstrate this, as well as the ben-
efits of modularity, consider the two toys in figure 1.5.

 The toy on the left is highly modular. The head, arms, hands, and legs can all be
easily and independently exchanged or replaced without affecting other parts of the
toy. The toy on the right, conversely, is highly non-modular. There is no easy way to
exchange or replace the head, arms, hands, or legs.

Figure 1.5 A modular toy can be easily reconfigured. A toy that has been stitched together
is extremely hard to reconfigure.

A modular toy

A nonmodular toy

17The pillars of code quality
One of the key features of a modular system (such as the toy on the left) is that the dif-
ferent components have well-defined interfaces, with as few points of interaction as
possible. If we consider a hand as a component, then with the toy on the left there is a
single point of interaction with a simple interface: a single peg and a single hole that it
fits into. The toy on the right has an incredibly complex interface between a hand and
the rest of the toy: 20-plus loops of thread on the hand and the arm interwoven into
one another.

 Now imagine that our job is maintaining these toys, and one day our manager tells
us that there is a new requirement that the hands now need to have fingers. Which
toy/system would we rather be working with?

 With the toy on the left, we could manufacture a new design of the hand and then
very easily exchange it with the existing ones. If our manager then changed their mind
two weeks later, we’d have no trouble returning the toy to its previous configuration.

 With the toy on the right, we’d probably have to get the scissors out, cut 20-plus
strands of thread, and then stitch new hands directly onto the toy. We’d likely damage
the toy in the process, and if our manager did change their mind two weeks later, we’d
have a similarly laborious process to return the toy to the previous configuration.

 Software systems and codebases are very much analogous to these toys. It’s often
beneficial to break a piece of code down into self-contained modules, where interac-
tions between two adjacent modules happen in a single place and use a well-defined
interface. This helps ensure that the code will be easier to adapt to changing require-
ments, because changes to one piece of functionality don’t require lots of changes all
over the place.

 Modular systems are also generally easier to comprehend and reason about,
because functionality is broken into manageable chunks and the interactions between
the chunks of functionality are well defined and documented. This increases the
chance that code will work in the first place and keep working in the future, because
it’s less likely that engineers will misunderstand what the code does.

 In chapter 2, we’ll see how creating clean layers of abstraction is a fundamental
technique that can guide us toward more modular code. And in chapter 8, we’ll look
at a number of specific techniques for making code more modular.

1.3.5 Make code reusable and generalizable

Reusability and generalizability are two similar but slightly different concepts:

 Reusability means that something can be used to solve the same problem but in
multiple scenarios. A hand drill is reusable because it can be used to drill holes
in walls, in floor boards, and in ceilings. The problem is the same (a hole needs
drilling), but the scenario is different (drilling into a wall versus into the floor
versus into the ceiling).

 Generalizability means something can be used to solve multiple conceptually sim-
ilar problems that are subtly different. A hand drill is also generalizable,
because as well as being used to drill holes, it can also be used to drive screws

18 CHAPTER 1 Code quality
into things. The drill manufacturer recognized that rotating something is a gen-
eral problem that applies to both drilling holes and driving screws, so they cre-
ated a tool that generalizes to solve both problems.

In the case of the drill, we can immediately recognize the benefits of this. Imagine if
we needed four different tools:

 A drill that only worked while being held level, meaning it was only useful for
drilling into walls.

 A drill that only worked while being pointed down at a 90° angle, meaning it
was only useful for drilling into the floor.

 A drill that only worked while being pointed up at a 90° angle, meaning it was
only useful for drilling into the ceiling.

 An electric screwdriver for driving screws into things.

We’d have spent a lot more money acquiring this collection of four tools, we’d have to
carry more stuff around with us, and we’d have to charge four times as many batter-
ies—it’s just wasteful. Thankfully someone created a drill that is both reusable and
generalizable, and we only need one to do all these different jobs. There are no prizes
for guessing that the hand drill here is yet another analogy for code.

 Code takes time and effort to create, and once it’s created it also takes ongoing
time and effort to maintain. Creating code is also not without risks: however careful
we are, some amount of the code we write will contain bugs, and the more of it we
write, the more bugs we’re likely to have. The point here is that the fewer lines of code
we have in a codebase, the better. It might seem weird to say this when our job seems
to involve being paid to write code, but really we’re being paid to solve a problem, and
code is just a means to that end. If we can solve that problem while exerting less effort
and also reduce the chance that we’re inadvertently creating other problems by intro-
ducing bugs, then great.

 Making code reusable and generalizable allows us (and others) to use it in multi-
ple places throughout a codebase, in more than one scenario, and to solve more than
one problem. It saves time and effort and makes our code more reliable because we’ll
often be reusing logic that has already been tried and tested in the wild, meaning any
bugs have likely already been discovered and fixed.

 Code that is more modular also tends to be more reusable and generalizable. The
chapters relating to modularity go hand-in-hand with the topic of reusability and gen-
eralizability. In addition, chapter 9 covers a number of techniques and considerations
specific to making code more reusable and generalizable.

1.3.6 Make code testable and test it properly

As we saw earlier in the software development and deployment diagram (figure 1.2),
tests are a vital part of the process of ensuring that bugs and broken functionality do
not end up running in the wild. They’re often the main defense at two of the key
points in the process (figure 1.6):

19The pillars of code quality
 Preventing buggy or broken functionality from being submitted to the code-
base

 Ensuring that a release with bugs or broken functionality is blocked and doesn’t
end up in the wild

Tests are therefore an essential part of ensuring that code works and that it keeps
working.

Figure 1.6 Tests are vital for minimizing the chance that bugs and broken functionality enter the
codebase and for ensuring they are not released into the wild if they do.

It’s hard to overstate just how important testing is in software development. You’ve no
doubt heard this multiple times before, and it becomes easy to start dismissing it as
just another platitude, but it really is important. As we’ll see at multiple points
throughout the book,

 software systems and codebases tend to be too big and complicated for a single
person to know every minute detail about them, and

 people (even exceptionally clever engineers) make mistakes.

These are more or less facts of life, and unless we lock the functionality of our code in
with tests, then these have a habit of ganging up on us (and our code).

 The title of this pillar of code quality contains two important concepts: “make code
testable” and “test it properly.” Testing and testability are related, but have different
considerations:

 Testing—As the name suggests, this relates to testing our code or the software as
a whole. Testing can be manual or automated. As engineers, we will usually
strive to make our testing automated by writing test code that exercises the
“real” code and checks that everything behaves as it should. There are different
levels of testing. Three of the most common you will probably work with are as
follows. (Please note that this is not an exhaustive list; there are many ways of categoriz-
ing tests, and different organizations often use different nomenclatures.)

The codebase

A code change is blocked
from being submitted
to the codebase if tests fail.

A release is blocked if quality
assurance checks fail. These
quality assurance checks
often include some form
of testing.

20 CHAPTER 1 Code quality
– Unit tests—These usually test small units of code such as individual functions
or classes. Unit testing is the level of testing engineers tend to work with most
often in their everyday coding. This is the only level of testing this book will
cover in any detail.

– Integration tests—A system is usually built up of multiple components, mod-
ules, or subsystems. The process of linking these components and subsystems
together is known as integration. Integration tests try to ensure that these inte-
grations work and stay working.

– End-to-end (E2E) tests—These test typical journeys (or workflows) through a
whole software system from start to finish. If the software in question were an
online shopping store, then an example of an E2E test might be one that
automatically drives a web browser to ensure that a user can go through the
workflow of completing a purchase.

 Testability—This refers to the “real” code (as opposed to the test code) and
describes how well that code lends itself to being tested. The concept of some-
thing being testable can also apply at the subsystem or system level. Testability is
often highly related to modularity, with more modular code (or systems) being
more testable. Imagine a car manufacturer is developing an emergency pedes-
trian braking system. If the system is not very modular, then the only way to test
it might be to install it in a real car, drive the car at a real pedestrian, and check
that the car automatically comes to a stop. If this is the case, then the number of
scenarios that the system can be tested in is limited, because the cost of each
test is so high: building an entire car, renting a test track, and putting a real per-
son at risk as they pretend to be a pedestrian in the road. The emergency brak-
ing system becomes a lot more testable if it’s a distinct module that can be run
outside of a real car. It can now be tested by feeding it a prerecorded video of a
pedestrian stepping out and then checking that the system outputs the correct
signal intended for the braking system. It’s now very easy, cheap, and safe to test
many thousands of different pedestrian scenarios.

If code is not testable, then it can become impossible to test it properly. To ensure that
the code we write is testable, it’s good to continually ask ourselves “How will we test
this?” as we are writing the code. Therefore, testing should not be considered an after-
thought: it’s an integral and fundamental part of writing code at all stages. Chapters
10 and 11 are all about testing, but because testing is so integral to writing code, we
will find that it crops up in numerous places throughout this book.

NOTE: TEST-DRIVEN DEVELOPMENT Because testing is so integral to writing
code, some engineers advocate that the tests should be written before the
code. This is one of the practices championed by the test-driven development
(TDD) process. We’ll discuss this more in chapter 10 (section 10.5).

Software testing is a huge topic, and to be upfront about it, this book will not come
close to doing it justice. In this book, we’ll cover some of the most important, and

21Does writing high-quality code slow us down?
often overlooked, aspects of unit testing code because these are usually most useful in
the course of everyday coding. But please be aware that by the end of this book we will
only have scratched the surface of what there is to know about software testing.

1.4 Does writing high-quality code slow us down?
The answer to this question is that in the very short term it might seem like writing
high-quality code slows us down. Writing code that is high quality usually requires a lit-
tle more thought and effort than just coding the first thing that comes into our heads.
But if we’re writing anything more substantive than a small, run-once-then-throw-away
utility, then writing high-quality code will usually speed up development times over
the mid to long term.

 Imagine we are putting a shelf up at home. There is the “proper” way of doing this,
and then there is the quick, “hacky” way of doing this:

 The proper way—We attach brackets to the wall by drilling and screwing into
something solid like the wall studs or masonry. We then mount the shelf on
these brackets. Time taken: 30 minutes.

 The hacky way—We buy some glue and glue the shelf to the wall. Time taken: 10
minutes.

It seems like the hacky way of putting the shelf up can save us 20 minutes and also
saves us the effort of getting the drill and screwdriver out. We chose the quick
approach; now let’s consider what happens next.

 We glued the shelf to whatever the wall is surfaced with; this is most likely a layer of
plaster. Plaster is not strong and can easily crack and come off in large chunks. As
soon as we start using the shelf, the weight of items on it will likely cause the plaster to
crack, and the shelf will fall and bring a large chunk of plaster with it. We now don’t
have a working shelf and also need to replaster and redecorate the wall (a job that will
take several hours, if not days). Even if by some miracle the shelf doesn’t fall down,
we’ve created future problems for ourselves by putting it up the quick way. Imagine a
couple of scenarios:

 We realize that we haven’t put the shelf up quite level (a bug):
– For the bracketed shelf, we can just add a smaller spacer between the bracket

and the shelf. Time taken: 5 minutes.
– For the glued shelf, we need to rip it off the wall; this will then take a big

chunk of plaster with it. We now need to replaster the wall and then put the
shelf back up. Time taken: several hours, if not days.

 We decide to redecorate the room (a new requirement):
– We can take the bracketed shelf down by taking the screws out. We redeco-

rate the room and then put the shelf back up afterward. Time taken for
shelf-related work: 15 minutes.

– For the glued shelf, we either leave the shelf up and then run the risk of drip-
ping paint on it and having untidy edges where we have to paint or wallpaper

22 CHAPTER 1 Code quality
around it. Or we need to rip the shelf off the wall and deal with the fact that
we’ll need to replaster. Our choice is between doing a shoddy redecorating
job or spending several hours or days replastering the wall.

You get the idea. It might have initially seemed like doing it properly and putting a
bracketed shelf up was an unnecessary waste of 20 minutes, but in the long run, it’s
quite likely that it saves us a lot of time and hassle. In the case of the future redecora-
tion project, we also saw how starting out with a quick, hacky solution then pushes us
down a path of doing more things in a hacky way, like trying to paint or wallpaper
around the shelf instead of taking it down while redecorating.

 Writing code is very similar to this. Coding the first thing that comes into our
heads, without considering the quality of the code, will likely save us some time ini-
tially. But we will quickly end up with a fragile, complicated codebase, which becomes
increasingly hard to understand or reason about. Adding new features or fixing bugs
will become increasingly difficult and slow as we have to deal with breakages and re-
engineering things.

 You may have heard the phrase “less haste, more speed” before; it’s a reference to
the observation that with many things in life, acting too hastily without thinking things
through or doing them properly often leads to mistakes that reduce our overall speed.
“Less haste, more speed” is an excellent summary of why writing high-quality code
speeds us up; don’t mistake haste for speed.

Summary
 To create good software, we need to write high-quality code.
 Before code becomes software running in the wild, it usually has to pass several

stages of checks and tests (sometimes manual, sometimes automated).
 These checks help prevent buggy and broken functionality reaching users or

business-critical systems.
 It’s good to consider testing at every stage of writing code; it shouldn’t be con-

sidered as an afterthought.
 It might seem like writing high-quality code slows us down initially, but it often

speeds up development times in the mid to long term.

Layers of abstraction
Writing code is about solving problems. These can be high-level problems, such as
“We need a feature to allow users to share photos,” all the way down to low-level
problems such as “We need some code to add two numbers together.” Even if we’re
not conscious of the fact we’re doing it, when we solve a high-level problem, we
usually do it by breaking it down into multiple, smaller subproblems. A problem
statement such as “We need a system to allow users to share photos” might imply
that we need to solve subproblems like storing photos, associating them with users,
and displaying them.

This chapter covers
 How to break a problem down into subproblems with

clean layers of abstraction

 How layers of abstraction can help us achieve a
number of the pillars of code quality

 APIs and implementation details

 How to break code into distinct layers of abstraction
using functions, classes, and interfaces
23

24 CHAPTER 2 Layers of abstraction
 How we solve problems and subproblems is important, but often just as important
is how we structure the code that solves them. For example, should we just dump
everything into one giant function or class, or should we try and break it out into mul-
tiple functions or classes? And if so, how should we do this?

 How we structure code is one of the most fundamental aspects of code quality, and
doing it well often comes down to creating clean layers of abstraction. This chapter will
explain what this means and demonstrate how breaking problems down into distinct
layers of abstraction, and structuring code to reflect this, can greatly improve its read-
ability, modularity, reusability, generalizability, and testability.

 This chapter and the following ones provide lots of pseudocode examples to
demonstrate the topics being discussed. Before delving into these examples, it’s
important to spend a few moments explaining how the pseudocode convention in this
book handles null values. Section 2.1 will go over this, while sections 2.2 onward will
cover the main topics of this chapter.

2.1 Nulls and the pseudocode convention in this book
Before we get into looking at coding examples, it’s important to explain how the
pseudocode convention in this book handles null values.

 Many programming languages have the concept of a value (or reference/pointer)
being absent; the built-in way of doing this is often with a null. Historically nulls have
straddled a dichotomy between being incredibly useful and incredibly problematic.

 They are useful because the concept of something being absent very often
occurs: a value hasn’t been provided, or a function is unable to provide the
desired result.

 They are problematic because it’s not always obvious when a value can/cannot
be null, and engineers very often forget to check if a variable is null before
accessing it. This very often leads to errors; you’ve likely seen a NullPointer-
Exception, NullReferenceException, or Cannot read property of
null error before, probably more than you care to remember.

Due to how problematic nulls can be, you will sometimes see advice that advocates
never using them, or at least never returning them from a function. This certainly
helps avoid the problems of nulls, but it can require a lot of code gymnastics to follow
this advice in practice.

 Luckily, in more recent years the idea of null safety (also called void safety) has
gained increased traction. This ensures that any variables or return values that can be
null are marked as such and the compiler enforces that they are not used without first
checking that they are not null.

 Most of the significant new languages to come out in recent years support null
safety. It can also be optionally enabled in more recent versions of languages like C#,
and there are even ways to retrofit it into languages like Java. If the language we are
using supports null safety, then it’s probably a good idea to make use of it.

25Why create layers of abstraction?
 If the language we’re using does not support null safety, then a good alternative to
using nulls is to use an optional type. Many languages have support for this, including
Java, Rust (called Option), and C++ (although there are nuances to consider in C++,
which are covered in appendix B). Even in languages that don’t support it as a stan-
dard feature, there are often third-party utilities that add support for it.

 The pseudocode convention in this book assumes that there is null safety. By
default, variables, function parameters, and return types are all non-nullable. But if
the type is suffixed with a ‘?’ then that means it can be null, and the compiler will
enforce that it is not used without first checking that it’s non-null. The following snip-
pet demonstrates what some pseudocode using null safety looks like:

Element? getFifthElement(List<Element> elements) {
 if (elements.size() < 5) {
 return null;
 }
 return elements[4];
}

If the language we’re using doesn’t support null safety and we want to write this func-
tion using an optional type, then the following snippet demonstrates how the code we
just saw could be rewritten:

Optional<Element> getFifthElement(List<Element> elements) {
 if (elements.size() < 5) {
 return Optional.empty();
 }
 return Optional.of(elements[4]);
}

If you want to know more about null safety and optional types, appendix B contains
more information.

2.2 Why create layers of abstraction?
Writing code is often about taking a complicated problem and continually breaking it
down into smaller subproblems. To demonstrate this, imagine we are writing a piece of
code to run on a user’s device and that we want to send a message to a server. We would
probably hope to be able to write something like the code in listing 2.1. Notice how sim-
ple the code is; it’s three lines and only requires dealing with four simple concepts:

 A URL for a server
 A connection
 Sending a message string
 Closing the connection

The ? in Element?
indicates that the return
type can be null.

null is returned when the
value can’t be obtained.

The return type
is an Optional
Element.

Optional.empty() is
returned instead of null.

26 CHAPTER 2 Layers of abstraction
HttpConnection connection =
 HttpConnection.connect("http:/./example.com/server");
connection.send("Hello server");
connection.close();

At a high level, this seems like quite a simple problem, and indeed the solution to it
does look quite simple. But this is obviously not a simple problem: there is an
immense amount of complexity involved in sending the string "Hello server" from
the client device to the server, including the following:

 Serializing the string into a format that can be transmitted
 All the intricacies of the HTTP protocol
 TCP connections
 Whether the user is on WiFi or a cellular network
 Modulating data onto a radio signal
 Data transmission errors and correction

In this example, there is a high-level problem we care about: sending a message to a
server. But to do this there are many subproblems that need to be solved (such as all
the ones just listed). Luckily for us, other engineers have already solved all these sub-
problems, but not only have they solved them, they’ve solved them in a way that means
we don’t even need to be aware of them.

 We can think of the solutions to problems and subproblems as forming a series of
layers. At the top-most layer, we care about sending a message to a server, and we can
write code to do this without having to know anything about how the HTTP protocol
is implemented. Similarly, the engineer who wrote the code to implement the HTTP
protocol probably didn’t have to know anything about how data is modulated onto a
radio signal. The engineer who implemented the HttpConnection code was able to
think of physical data transmission as an abstract concept, and, in turn, we are able to
think of an HTTP connection as an abstract concept. This is known as layers of abstrac-
tion. Figure 2.1 shows some of the layers of abstraction involved in sending a message
to a server.

 It’s worth taking another moment to appreciate just how simple the code for send-
ing a message to a server is when compared to the vast complexity involved in actually
doing it:

 It took three lines of simple code.
 It only involved dealing with four simple concepts:

– A URL for a server
– A connection
– Sending a message string
– Closing the connection

Listing 2.1 Sending a message to a server

27Why create layers of abstraction?
More generally, if we do a good job of recursively breaking a problem down into sub-
problems and creating layers of abstraction, then no individual piece of code will ever
seem particularly complicated, because it will be dealing with just a few easily compre-
hended concepts at a time. This should be our aim when solving a problem as a soft-
ware engineer: even if the problem is incredibly complicated we can tame it by
identifying the subproblems and creating the correct layers of abstraction.

2.2.1 Layers of abstraction and the pillars of code quality

Building clean and distinct layers of abstraction goes a long way to achieving four of the
pillars of code quality that we saw in chapter 1. The following subsections explain why.

READABILITY

It’s impossible for engineers to understand every minutiae of every piece of code in a
codebase, but it’s quite easy for them to understand and use a few high-level abstrac-
tions at a time. Creating clean and distinct layers of abstraction means that engineers

Sending a message to
a server via HTTP

Opening an HTTP
connection

Closing an HTTP
connection

Using the HTTP
protocol

Sending a string
message

Establishing a
TCP connection

Error detection and
retransmission

Sending data
over the network

WiFi or cellular
connection?

Establishing an
HTTP session

High-level problem

Subproblems that we
need to be aware of

Subproblems that
we don't need to
be aware of

Figure 2.1 When sending a message to a server, we can reuse the solutions to subproblems
that others have already created. The clean layers of abstraction also mean that we only have
to be aware of a few concepts in order to solve the high-level problem we care about.

28 CHAPTER 2 Layers of abstraction
only need to deal with one or two layers and a few concepts at a time. This greatly
increases the readability of code.

MODULARITY

When layers of abstraction cleanly divide the solutions to subproblems and ensure
that no implementation details are leaked between them, then it becomes very easy to
swap the implementations within a layer without affecting other layers or parts of the
code. In the HttpConnection example, the part of the system that handles the
physical data transmission will likely be modular. If the user is on WiFi then one mod-
ule will be used; if the user is on a cellular network then a different module will be
used. We don’t need to do anything special in our higher level code to accommodate
these different scenarios.

REUSABILITY AND GENERALIZABILITY

If the solution to a subproblem is presented as a clean layer of abstraction, then it’s
easy to reuse just the solution to that subproblem. And if problems are broken down
into suitably abstract subproblems, then it’s likely that the solutions will generalize to
be useful in multiple different scenarios. In the HttpConnection example, most of
the parts of the system that handle TCP/IP and network connections can probably
also be used to solve the subproblems needed with other types of connection like
WebSockets.

TESTABILITY

If you were buying a house and wanted to be sure it was structurally sound, you
wouldn’t just look at the outside and say “Yep, looks like a house. I’ll buy it.” You
would want a surveyor to check that the foundations aren’t subsiding, that the walls
aren’t cracked, and that any timber structures aren’t rotten. Similarly, if we want reli-
able code, then we also need to ensure that the solution to each subproblem is sound
and working. If the code is split cleanly into layers of abstraction, then it becomes a lot
easier to fully test the solution to each subproblem.

2.3 Layers of code
In practice, the way we create layers of abstraction is by dividing code into different
units, where one unit depends on another, creating a dependency graph (figure 2.2).
In most programming languages we have several constructs at our disposal for break-
ing code into different units. More often than not we will have the following:

 Functions
 Classes (and potentially other class-like things such as structs and mixins)
 Interfaces (or an equivalent construct)
 Packages, namespaces, or modules

– I mention these for completeness, but we won’t actually cover them in this
book, as these higher levels of code structuring are often dictated largely by
organizational and system design considerations, neither of which are in the
scope of this book.

29Layers of code
The next few sections will explore how best to break code into clean layers of abstrac-
tion by using functions, classes, and interfaces.

2.3.1 APIs and implementation details

When writing some code, there are often two aspects we need to think about:

 Things that callers of our code will see:

– Which classes, interfaces, and functions we make public
– What concepts things expose in their names, input parameters, and return

types
– Any extra information that callers need to know to use the code correctly

(such as the order in which to call things)

 Things that callers of our code will not see: implementation details.

If you’ve ever worked with services (building them or calling them), then you will likely
be familiar with the term application programming interface (API). This formalizes the
concept of things that callers of a service need to know, and all the implementation
details of the service remain hidden behind the API.

 It’s often useful to think of the code we write as exposing a mini API that other
pieces of code can use. Engineers often do this, and you will likely hear them talking

Package 1

Package 2

Class 1

Function 1

Function 2

Class 2

Function 3

Interface 1

Function 4

Class 3

Function 4 implementation

Classes depend
on other classes.

Packages depend
on other packages.

Functions depend
on other functions.

Classes depend
on interfaces.

Classes implement
interfaces.

Figure 2.2 Units of code depend on other units of code, forming a dependency graph.

30 CHAPTER 2 Layers of abstraction
of classes, interfaces, and functions as “exposing an API.” Figure 2.3 provides an
example of how the different aspects of a class can be divided between being part of a
public API and implementation details.

 Thinking about code in terms of APIs can help create clean layers of abstraction
because the API defines what concepts are exposed to callers, and everything else is
an implementation detail. If we’re writing or modifying some code, and something
that should be an implementation detail leaks into the API (via an input parameter,
return type, or public function), then it’s obvious that the layers of abstraction are not
as clean and distinct as they probably should be.

 We’ll use this concept of code exposing an API at multiple places throughout this
book, as it’s a useful and succinct way to refer to the layer of abstraction a piece of
code provides.

2.3.2 Functions

The threshold at which it’s beneficial to break out some logic into a new function is
often quite low. The code inside each function should ideally read like a single, short,
well-written sentence. To demonstrate this, consider the following example of a

Dependencies

Class 1

Int function1(Int val)

private void function3()

void function2()

private void function4()

Public API

Implementation details

Depends on

Public documentation

/**
 * Usage: ...
 */
Int function1(Int val) {

}

Dependencies
private void function3()

private void function4()

Implementation details

Depends on

}

The class name, documentation,
and any public functions are
all part of the public API.

The name, return type, parameters,
and documentation of a public
function are part of the public API.

The code within a function
is an implementation detail
(even if it’s a public function).

Any private functions
or variables are
implementation details.

Which things the class
depends on is an
implementation detail.

Figure 2.3 We can think of the parts of our code that callers should be aware of as exposing a
public API. Anything not exposed in the public API is an implementation detail.

31Layers of code
function that tries to do too much (listing 2.2). The function finds the address of a
vehicle owner and then sends them a letter if one is found. The function contains all
the nuts-and-bolts logic for finding the owner’s address, as well as the function call to
send the letter. This makes it hard to understand, as it deals with too many concepts at
once. In listing 2.2, we can also see how doing too much inside a single function can
lead to other issues that make the code hard to understand, such as deeply nested if-
statements (chapter 5 will cover this in more detail).

SentConfirmation? sendOwnerALetter(
 Vehicle vehicle, Letter letter) {
 Address? ownersAddress = null;
 if (vehicle.hasBeenScraped()) {
 ownersAddress = SCRAPYARD_ADDRESS;
 } else {
 Purchase? mostRecentPurchase =
 vehicle.getMostRecentPurchase();
 if (mostRecentPurchase == null) {
 ownersAddress = SHOWROOM_ADDRESS;
 } else {
 ownersAddress = mostRecentPurchase.getBuyersAddress();
 }
 }
 if (ownersAddress == null) {
 return null;
 }
 return sendLetter(ownersAddress, letter);
}

If the sendOwnerALetter() function were translated into a sentence it would read,
“Find the owner’s address (which will be the scrapyard address if the vehicle has been
scrapped, or the showroom address if the vehicle has not been sold yet, or the regis-
tered buyer’s address if there is one) and if found, send them a letter.” That is not a
nice sentence: it requires dealing with several different concepts all in one go, and the
sheer volume of words means we’d probably have to take several attempts at reading it
to be sure we’d properly understood it.

 It would be much nicer if we could have a function that translated into something
like, “Find the owner’s address (more details below), and if found, send them a letter.”
A good strategy to try and ensure that functions can be translated into nice sentences
like this is to limit a single function to either of the following:

 Performing one single task
 Composing more complex behavior by just calling other well-named functions

This is not an exact science, because “one single task” is open to interpretation, and
even when composing more complex behavior by just calling other functions, we will
likely still need some control flow (like an if-statement, or a for-loop). So once we’ve
written a function, it’s worth trying to read it as a sentence. If it’s difficult to do this, or

Listing 2.2 A function that does too much

The nuts-and-bolts
logic for finding the
owner’s address

Logic for conditionally
sending the letter

32 CHAPTER 2 Layers of abstraction
the sentence gets very clunky, then it’s likely that the function is too long, and it would
be beneficial to break it into smaller functions.

 In the case of sendOwnerALetter() we’ve already established that it doesn’t
translate into a nice sentence, and it also clearly doesn’t follow the strategy just men-
tioned. The function performs two tasks: finding the owner’s address and triggering
the sending of a letter. But instead of doing this by just composing functionality out of
other functions, it contains the nuts-and-bolts logic for finding the owner’s address.

 A better approach would be to split the logic to find the owner’s address into a sep-
arate function, so the sendOwnerALetter() function now translates into the more
ideal sentence. Listing 2.3 shows what this looks like. Anyone reading it after this
change can easily understand how it solves the given subproblem:

1 Get the owner’s address.
2 Send a letter to the owner if an address was found.

Another benefit of the new code in listing 2.3 is that the logic to find the owner’s
address is now more easily reusable. In the future, there might be a request to build a
feature that displays just the owner’s address without sending a letter. The engineer
building this could reuse the getOwnersAddress() function within the same class,
or move it to an appropriate helper class and make it public relatively easily.

SentConfirmation? sendOwnerALetter(Vehicle vehicle, Letter letter) {
 Address? ownersAddress = getOwnersAddress(vehicle);
 if (ownersAddress == null) {
 return null;
 }
 return sendLetter(ownersAddress, letter);
}

private Address? getOwnersAddress(Vehicle vehicle) {
 if (vehicle.hasBeenScraped()) {
 return SCRAPYARD_ADDRESS;
 }
 Purchase? mostRecentPurchase = vehicle.getMostRecentPurchase();
 if (mostRecentPurchase == null) {
 return SHOWROOM_ADDRESS;
 }
 return mostRecentPurchase.getBuyersAddress();
}

Making functions small and focused is one of the best ways to ensure that code is read-
able and reusable. When churning out code, it’s quite easy to end up writing a func-
tion that’s too long and not very readable. So after writing the first cut of our code,
and before sending it for review, it’s often worth taking a critical look at it. Whenever
we see a function that’s hard to translate into a sentence, we should consider breaking
out parts of the logic into well-named helper functions.

Listing 2.3 Smaller functions

Get the owner’s
address.Send a letter to

the owner if an
address was found.

Function to find
owner’s address. Can
be easily reused.

33Layers of code
2.3.3 Classes

Engineers often debate what the ideal size for a single class is, and many theories and
rules of thumb have been put forward such as the following:

 Number of lines—You will sometimes hear guidance such as “a class shouldn’t be
longer than 300 lines of code.”
– It’s very often (but not always) true that a class that is longer than 300 lines is

handling too many concepts and should be broken up. This rule of thumb
does not imply that a class that is 300 lines or fewer is an appropriate size. It
serves only as a warning that something might be wrong but is not an assur-
ance that anything is right. Rules like this are, therefore, often of quite lim-
ited practical use.

 Cohesion1—This is a gauge of how well the things inside a class “belong” together,
with the idea being that a good class is one that is highly cohesive. There are
many ways in which things might be classified as being cohesive to one another.
Here are a couple of examples:
– Sequential cohesion—This occurs when the output of one thing is needed as an

input to another thing. A real-world example of this might be making a cup of
fresh coffee. We can’t brew the coffee until we grind the beans; the output of
the bean-grinding process is an input to the coffee-brewing process. We might
therefore conclude that grinding and brewing are cohesive to one another.

– Functional cohesion—This occurs when a group of things all contribute to
achieving a single task. The definition of a single task can be highly subjective,
but a real-world example might be if you were to keep all your cake-making
equipment in a single dedicated drawer in your kitchen. You’ve decided that
mixing bowls, wooden spoons, and cake tins are all cohesive and belong
together because they all contribute to the same functional task: making cakes.

 Separation of concerns2—This is a design principle that advocates that systems
should be separated into individual components that each deal with a distinct
problem (or concern). A real-world example of this is how a games console is
usually separate from a TV, rather than being bundled together into a single
inseparable appliance. The games console is concerned with running a game,
and the TV is concerned with displaying a moving picture. This allows for more
configurability: one person buying a games console might live in a small apart-
ment and only have room for a small TV, while someone else with more space
might want to plug it into a 292-inch wall TV. The separation of these items also
allows us to upgrade one without having to upgrade the other. When a newer,
faster games console comes out, we don’t have to also incur the cost of a new TV.

1 The idea of using cohesion as a metric for assessing software structure was first introduced by Larry L. Con-
stantine in the 1960s and later expanded on by Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine
in the 1970s.

2 The term separation of concerns is widely believed to have been coined by Edsger W. Dijkstra in the 1970s.

34 CHAPTER 2 Layers of abstraction
The ideas of cohesion and separation of concerns generally require us to make a deci-
sion about the level at which it’s useful to consider a group of related things one thing.
This can often be trickier than it might seem because it can be highly subjective. To
one person, grouping grinding and coffee brewing together might make perfect
sense, but to another person who just wants to grind spices for cooking, this might
seem like a very unhelpful way of grouping things, because they obviously don’t want
to brew their spices.

 I’ve not met many engineers who are completely unaware of these rules of thumb,
or who would disagree with a statement like “A class should be cohesive and ideally
concerned with one single thing.” But despite knowing this advice, many engineers
still write classes that are way too big. Classes often end up being too big when engi-
neers don’t think carefully enough about how many different concepts they are intro-
ducing within a single class and which pieces of logic might be appropriate for being
reused or reconfigured. This can sometimes happen when a class is first authored,
and it can sometimes happen as a class grows organically over time, so it’s important
to think about whether a class is getting too big, both when modifying existing code as
well as when writing completely new code.

 Rules of thumb like “a class should only be concerned with one thing” or “a class
should be cohesive” exist to try and guide engineers to create higher quality code. But
we still need to think carefully about what we’re fundamentally trying to achieve. With
regard to layers of code and creating classes, four of the pillars that were defined in
chapter 1 capture what we should be trying to achieve:

 Make code readable —The greater the number of different concepts that we bun-
dle together in a single class, the less readable that class is going to be. Human
brains are not good at consciously thinking about a lot of things simultaneously.
The more cognitive load we put on other engineers trying to read the code, the
longer it will take them, and the more likely they are to misinterpret it.

 Make code modular—Using classes and interfaces is one of the best ways to make
code modular. If the solution to a subproblem is self-contained inside its own
class, and other classes only interact with it via a few well thought–out public
functions, then it will be easy to swap out that implementation with another one
should we need to.

 Make code reusable and generalizable—If solving a problem requires solving two
subproblems, then there’s a reasonable chance that someone else might also
need to solve one of those subproblems in the future. If we bundle the solution
to both subproblems together in one class, then it reduces the chance someone
else will be able to reuse one of them.

 Make code testable and test it properly—The previous section used the house anal-
ogy, where we’d want to check the soundness of all parts of a house before buy-
ing it, not just its external appearance. Likewise, if logic is broken into classes,
then it becomes a lot easier to properly test each piece of it.

Figure 2.4 illustrates how a class that’s too big can end up achieving the opposite of
these four pillars.

35Layers of code
Figure 2.4 Not breaking code into appropriately sized classes often results in code that deals with
too many concepts at once, and that is less readable, modular, reusable, generalizable, and testable.

To demonstrate how these pillars can help us structure our classes, let’s look at some
code. Listing 2.4 contains a class that can be used to summarize a passage of text. It
does this by splitting the text into paragraphs and filtering out any paragraphs it deter-
mines to have a low importance score. In solving the problem of summarizing text,
the author of this class has to solve subproblems. They’ve kind of created some layers
of abstraction by dividing things into separate functions, but they’ve still just dumped
everything into a single class, meaning the separation between the layers of abstrac-
tion is not very distinct.

class TextSummarizer {
 ...

 String summarizeText(String text) {
 return splitIntoParagraphs(text)
 .filter(paragraph -> calculateImportance(paragraph) >=
 IMPORTANCE_THRESHOLD)
 .join("\n\n");
 }

 private Double calculateImportance(String paragraph) {
 List<String> nouns = extractImportantNouns(paragraph);

Listing 2.4 A class that’s too big

MassiveClass

• Solution to subproblem 1
• Solution to subproblem 2
• Solution to subproblem 3
• Solution to subproblem 4
• Solution to subproblem 5
• Solution to subproblem 6

Code that solves the original
high-level problem

Depends on

Code that solves a different
high-level problem

Tests

Code that needs to use most
of the same logic but just

solve one of the subproblems
in a different way

Can test using
some broad
test cases

Hard to test the
solutions to
subproblems properly

Can’t reuse the solutions
to subproblems

Can’t modularly swap out
parts of functionality

Many different concepts all in the
same class. This makes the code
hard to understand.

36 CHAPTER 2 Layers of abstraction
 List<String> verbs = extractImportantVerbs(paragraph);
 List<String> adjectives = extractImportantAdjectives(paragraph);
 ... a complicated equation ...
 return importanceScore;
 }

 private List<String> extractImportantNouns(String text) { ... }
 private List<String> extractImportantVerbs(String text) { ... }
 private List<String> extractImportantAdjectives(String text) { ... }

 private List<String> splitIntoParagraphs(String text) {
 List<String> paragraphs = [];
 Int? start = detectParagraphStartOffset(text, 0);
 while (start != null) {
 Int? end = detectParagraphEndOffset(text, start);
 if (end == null) {
 break;
 }
 paragraphs.add(text.subString(start, end));
 start = detectParagraphStartOffset(text, end);
 }
 return paragraphs;
 }

 private Int? detectParagraphStartOffset(
 String text, Int fromOffset) { ... }

 private Int? detectParagraphEndOffset(
 String text, Int fromOffset) { ... }
}

If we spoke to the author of this class, they might well claim that it’s only concerned
with one thing: summarizing a passage of text. And at a high level, they’d be kind of
right. But the class clearly contains code that solves a bunch of subproblems:

 Splitting the text into paragraphs
 Calculating an importance score for a string of text

– This further divides into the subproblems of finding the important nouns,
verbs, and adjectives

Based on this observation, another engineer might argue back and say, “No, this class
is concerned with multiple different things. It should be broken up.” In this scenario
both the engineers agree with the notion that the class should be cohesive and con-
cerned with one thing, but they disagree about whether solving the associated sub-
problems count as different concerns or intrinsic parts of the main problem. To better
judge whether this class should be broken up, it might be better to look at how it
stacks up against the pillars we just mentioned. If we do this, we will likely conclude
that the class in its current form is low-quality code, based on the following (also illus-
trated in figure 2.5):

 The code is not as readable as it could be. When we initially read the code, it’s a wall
of several different concepts such as splitting text into paragraphs, extracting

37Layers of code
things like important nouns, and calculating importance scores. It takes some
time to figure out which of these concepts is needed for solving which of the
subproblems.

 The code is not particularly modular . This makes it hard to reconfigure or modify
the code. This algorithm is no doubt quite a naive way of summarizing a pas-
sage of text and is likely something that engineers will want to iterate on over
time. It’s hard to reconfigure the code to try out new things without modifying
it for every caller. It’d be better if the code were modular, so we could swap in a
new way of calculating the importance score for example.

 The code is not reusable. When working on solving a different problem, we might
end up needing to solve some of the same subproblems that were solved here.
If we had to build a feature to count how many paragraphs a passage of text
contained, then it’d be great if we could just reuse the splitInto-
Paragraphs() function. Currently we can’t do this, and we’d have to re-solve
this subproblem ourselves, or else refactor the TextSummarizer class. Making
the splitIntoParagraphs() function public to allow reuse might seem
tempting, but would not be a good idea: it would pollute the public API of the
TextSummarizer class with a seemingly unrelated concept, and it would make
it awkward to modify this functionality within the TextSummarizer class in the
future, since other external code would start depending on the splitInto-
Paragraphs() function.

Figure 2.5 The TextSummarizer class contains with too many different concepts and results
in code that is less readable, modular, reusable, generalizable, and testable.

TextSummarizer

• Summarizing text
• Calculating importance score
• Finding important nouns, adjectives, and verbs
• Splitting text into paragraphs
• Finding paragraph start
• Finding paragraph end

Code that needs to
summarize some text

Depends on

Code that needs to count
the number of paragraphs

Tests

Code that needs to use a
different scoring algorithm

Can test using
some broad
test cases

Hard to test finer
details, like importance
scoring logic

Can’t reuse the solutions
to subproblems

Can’t modularly swap out
parts of functionality

Many different concepts all in
the same class. This makes the
code hard to understand.

38 CHAPTER 2 Layers of abstraction
 The code is not generalizable. The whole solution assumes that the text being input
is plain text. But we might want to start summarizing web pages at some point in
the near future. In that case we might want to input a passage of HTML rather
than plain text. If the code were more modular, then we could perhaps swap
out the logic that splits the text into paragraphs with something that could split
HTML into paragraphs.

 The code is hard to test properly. Many of the subproblems being solved actually
have quite complicated solutions. Splitting the text into paragraphs looks like a
nontrivial problem, and calculating the importance score is a particularly
involved algorithm. Currently all that can be tested is the overall behavior via
the summarizeText() function, but it’ll be hard to properly test all the intrica-
cies of whether the importance score code is working by just calling
summarizeText(). We could start making other functions public (such as
calculateImportance()) so that we can test them properly, but this would
then clutter the public API of TextSummarizer. We could add a comment say-
ing, “Only publicly visible for testing,” but this just increases the cognitive load
on other engineers even further.

The TextSummarizer class is clearly too big and handles too many different con-
cepts, and this is reducing the code quality. The next section shows how this code
could be improved.

HOW TO IMPROVE THE CODE

The code could be improved by splitting the solution to each subproblem into its own
respective class and is shown in the following listing. The classes that solve the subprob-
lems are provided to the TextSummarizer class as parameters in its constructor. This
pattern is known as dependency injection and will be discussed in more detail in chapter 8.

class TextSummarizer {
 private final ParagraphFinder paragraphFinder;
 private final TextImportanceScorer importanceScorer;

 TextSummarizer(
 ParagraphFinder paragraphFinder,
 TextImportanceScorer importanceScorer) {
 this.paragraphFinder = paragraphFinder;
 this.importanceScorer = importanceScorer;
 }

 static TextSummarizer createDefault() {
 return new TextSummarizer(
 new ParagraphFinder(),
 new TextImportanceScorer());
 }

 String summarizeText(String text) {
 return paragraphFinder.find(text)

Listing 2.5 One class per concept

The class’s dependencies
are injected via its
constructor. This is known
as dependency injection.

A static factory function to make
it easy for callers to create a
default instance of the class

39Layers of code
 .filter(paragraph ->
 importanceScorer.isImportant(paragraph))
 .join("\n\n");
 }
}

class ParagraphFinder {
 List<String> find(String text) {
 List<String> paragraphs = [];
 Int? start = detectParagraphStartOffset(text, 0);
 while (start != null) {
 Int? end = detectParagraphEndOffset(text, start);
 if (end == null) {
 break;
 }
 paragraphs.add(text.subString(start, end));
 start = detectParagraphStartOffset(text, end);
 }
 return paragraphs;
 }

 private Int? detectParagraphStartOffset(
 String text, Int fromOffset) { ... }

 private Int? detectParagraphEndOffset(
 String text, Int fromOffset) { ... }
}

class TextImportanceScorer {
 ...
 Boolean isImportant(String text) {
 return calculateImportance(text) >=
 IMPORTANCE_THRESHOLD;
 }

 private Double calculateImportance(String text) {
 List<String> nouns = extractImportantNouns(text);
 List<String> verbs = extractImportantVerbs(text);
 List<String> adjectives = extractImportantAdjectives(text);
 ... a complicated equation ...
 return importanceScore;
 }

 private List<String> extractImportantNouns(String text) { ... }
 private List<String> extractImportantVerbs(String text) { ... }
 private List<String> extractImportantAdjectives(String text) { ... }
}

The code is now a lot more readable, because each class requires someone reading it to
deal with only a few concepts at a time. We can look at the TextSummarizer class and
within a few seconds know all the concepts and steps that form the high-level algorithm:

 Find the paragraphs.
 Filter out the ones that aren’t important.
 Join the paragraphs that are left.

The solutions to
subproblems are split
into their own classes.

40 CHAPTER 2 Layers of abstraction
If that’s all we wanted to know, then great; job done. If we didn’t really care how scores
were calculated but wanted to know how paragraphs were found, then we can move to
the ParagraphFinder class and quickly understand how that subproblem is solved.

 As shown in figure 2.6, there are numerous other benefits:

 The code is now more modular and reconfigurable. If we wanted to try out a different
way of scoring text, then it would be trivial to extract TextImportanceScorer

TextSummarizer
• Summarizing text

Code that needs to
summarize some text

Depends on

Easy to extract an interface
and modularly swap out
parts of functionality

ParagraphFinder

• Splitting text into paragraphs
• Finding paragraph start
• Finding paragraph end

TextImportanceScorer

• Calculating importance score
• Finding important nouns,
 adjectives, and verbs

Code that needs to count
the number of paragraphs

Tests

Tests

Easy to test finer
details, like importance
scoring logic

Only a few highly related concepts per class.
This makes the code easy to understand.

Can reuse the
solutions to
subproblems

Tests

TextImportanceScorer
Interface

WordBasedScorer
Implements TextImportanceScorer

• Calculating importance score
• Finding important nouns,
 adjectives, and verbs

ModelBasedScorer
Implements TextImportanceScorer

• Loading a machine learning model
• Running a machine learning model

Potential change in the future

Figure 2.6 Breaking code into appropriately sized layers of abstraction results in code that
deals with only a few concepts at once. This makes the code more readable, modular, reusable,
generalizable, and testable.

41Layers of code
into an interface and create an alternative implementation of it. We’ll discuss this
in the next section.

 The code is more reusable. We can quite easily use the ParagraphFinder class in
other scenarios now if we wanted to.

 The code is more testable. It’s easy to write comprehensive and focused tests for
each of the subproblem classes.

Large classes that do too many things are all too common in a lot of codebases, and as
this section demonstrates, this often leads to a reduction in code quality. It’s good to
think carefully when designing a class hierarchy about whether it meets the pillars of
code quality that were just discussed. Classes can often grow organically over time to
become too big, so it helps to think about these pillars when modifying existing
classes, as well as when authoring new ones. Breaking code down into appropriately
sized classes is one of the most effective tools for ensuring we have good layers of
abstraction, so it’s worth spending time and thought on getting it right.

2.3.4 Interfaces

One approach sometimes used to force layers to be distinct and to ensure that imple-
mentation details are not leaked between layers is to define an interface that deter-
mines which public functions will be exposed by that layer. The actual class containing
the code for the layer will then implement this interface. The layers of code above this
would only depend on the interface and never the concrete class that implements
the logic.

 If we have more than one implementation for a given abstract layer, or if we think
that we will be adding more in the future, then it’s usually a good idea to define an
interface. To demonstrate this, consider the example we saw in the previous section
for summarizing text. An important subproblem is scoring pieces of text (in this case,
paragraphs) to determine whether they could be omitted from the summary. The
original code uses quite a naive solution based on finding important words.

 A more robust approach might be to use machine learning to train a model to
determine whether a piece of text is important. This is likely something we’d want to
experiment with, try out in development mode first, and maybe release as an optional
beta. We don’t want to simply replace the old logic with the model-based approach in
one go; we need a way to configure the code with either of the approaches.

 One of the best ways to do this is to extract the TextImportanceScorer class into
an interface and then have an implementation class for each of the approaches to
solving this subproblem. The TextSummarizer class would only ever depend on the
TextImportanceScorer interface and never on any of the concrete implementa-
tions. Figure 2.7 shows how this might look in terms of the dependencies between the
different classes and the interface.

42 CHAPTER 2 Layers of abstraction

Figure 2.7 By defining an interface to represent a layer of abstraction, we can easily swap
implementations for solving the given subproblem. This makes code more modular and configurable.

The code in the following listing shows how the new interface and implementation
classes might look.

interface TextImportanceScorer {
 Boolean isImportant(String text);
}

class WordBasedScorer implements TextImportanceScorer {
 ...
 override Boolean isImportant(String text) {
 return calculateImportance(text) >=
 IMPORTANCE_THRESHOLD;
 }

 private Double calculateImportance(String text) {
 List<String> nouns = extractImportantNouns(text);
 List<String> verbs = extractImportantVerbs(text);
 List<String> adjectives = extractImportantAdjectives(text);
 ... a complicated equation ...
 return importanceScore;
 }

 private List<String> extractImportantNouns(String text) { ... }
 private List<String> extractImportantVerbs(String text) { ... }
 private List<String> extractImportantAdjectives(String text) { ... }
}

Listing 2.6 An interface and implementations

TextSummarizer
• Summarizing text

TextImportanceScorer
Interface

WordBasedScorer
Implements TextImportanceScorer

• Calculating importance score
• Finding important nouns,
 adjectives, and verbs

ModelBasedScorer
Implements TextImportanceScorer

• Loading a machine learning model
• Running a machine learning model

Factory function

A factory function makes it
easy to get an instance of
the TextSummarizer class.
An alternative is to use a
dependency injection
framework.

Depends on

TextImportanceScorer
is now an interface
rather than a class.

The original
TextImportanceScorer
class is renamed and
implements the new
interface.

Function marked with “override”
to indicate that it overrides the
function from the interface

43Layers of code
class ModelBasedScorer implements TextImportanceScorer {
 private final TextPredictionModel model;
 ...

 static ModelBasedScorer create() {
 return new ModelBasedScorer(
 TextPredictionModel.load(MODEL_FILE));
 }

 override Boolean isImportant(String text) {
 return model.predict(text) >=
 MODEL_THRESHOLD;
 }
}

It’s now straightforward to configure the TextSummarizer to use either the Word-
BasedScorer or the ModelBasedScorer using one of two factory functions. The fol-
lowing listing shows what the code for two factory functions to create an instance of
the TextSummarizer class might look like.

TextSummarizer createWordBasedSummarizer() {
 return new TextSummarizer(
 new ParagraphFinder(), new WordBasedScorer());
}

TextSummarizer createModelBasedSummarizer() {
 return new TextSummarizer(
 new ParagraphFinder(), ModelBasedScorer.create());
}

Interfaces are an extremely useful tool for creating code that provides clean layers of
abstraction. Whenever we need to switch between two or more different concrete
implementations for a given subproblem, it’s usually best to define an interface to rep-
resent the layer of abstraction. This will make our code more modular and much eas-
ier to reconfigure.

INTERFACES FOR EVERYTHING?
If you have only one implementation of a given layer of abstraction, and you don’t
envision adding more in the future, then it’s really up to you (and your team) to
decide whether you think hiding layers behind an interface is worth it. Some software
engineering philosophies make a point of encouraging this. If we were to follow this
and hide the TextSummarizer class we just saw behind an interface, then it would
look something like the following in listing 2.8. Under this regime, TextSummarizer
is the interface that layers of code above this one would depend on; they would never
depend directly on the TextSummarizerImpl implementation class.

Listing 2.7 Factory functions

The new model-based
scorer also implements
the interface.

44 CHAPTER 2 Layers of abstraction

interface TextSummarizer {
 String summarizeText(String text);
}

class TextSummarizerImpl implements TextSummarizer {
 . . .

 override String summarizeText(String text) {
 return paragraphFinder.find(text)
 .filter(paragraph ->
 importanceScorer.isImportant(paragraph))
 .join("\n\n");
 }
}

Even though there is only one implementation of TextSummarizer, and even if we
can’t envision ever adding another implementation of it in the future, there are some
benefits to this approach:

 It makes the public API very clear—There’s no confusion about which functions
engineers using this layer should/shouldn’t use. If an engineer adds a new public
function to the TextSummarizerImpl class, then it won’t be exposed to layers
of code above this since they only depend on the TextSummarizer interface.

 We may have guessed wrong about only needing one implementation—When originally
writing the code, we may have been absolutely sure that we would not need a
second implementation, but after a month or two, this assumption may prove
wrong. Maybe we realize that summarizing text by just omitting a few para-
graphs is not very effective and decide to experiment with another algorithm
that summarizes text in a completely different way.

 It can make testing easier—If our implementation class did something particularly
complicated or depended on network I/O, for example, then we might want to
substitute it with a mock or a fake implementation during testing. Depending
on the programming language we are using, we may need to define an inter-
face to do this.

 The same class can solve two subproblems—It’s sometimes possible for a single class
to provide the implementation to two or more different layers of abstraction.
An example of this is how a LinkedList implementation class might imple-
ment both a List and a Queue interface. This means it can be used as a queue
in one scenario without allowing code in that scenario to also use it as a list.
This can greatly increase the generalizability of code.

On the other hand, the downsides of defining an interface are as follows:

 It’s a bit more effort—We have to write a few more lines of code (and maybe a new
file) to define the interface.

Listing 2.8 An interface and a single implementation

Only functions defined in the
interface will be visible to users
of this layer of abstraction.

TextSummarizerImpl is
the only class that
implements the
TextSummarizer interface.

45Layers of code
 It can make code more complicated—When another engineer wants to understand
the code, it can be harder for them to navigate the logic. If they want to under-
stand how a certain subproblem is being solved, then instead of just directly
navigating to the class that implements the layer below, they have to navigate to
the interface and then find the concrete class that implements that interface.

In my personal experience, taking an extreme stance and hiding every single class
behind an interface often gets out of hand and can create code that becomes unnec-
essarily complex to understand and modify. My advice is to use an interface where it
provides an appreciable benefit, but not to do it just for the sake of doing it. Despite
this, it’s still important to concentrate on creating clean and distinct layers of abstrac-
tion. Even if we don’t define an interface, we should still think very carefully about
which public functions our classes expose and make sure no implementation details
are leaked. In general, whenever we write or modify a class we should ensure that it
would be a trivial job to hide it behind an interface at some later time if we needed to.

2.3.5 When layers get too thin

Despite the benefits, there are some overheads associated with breaking code into dis-
tinct layers, such as the following:

 More lines of code, due to all the boilerplate required to define a class or
import dependencies into a new file.

 The effort required to switch between files or classes when following a chain of
logic.

 If we end up hiding a layer behind an interface, then it requires more effort to
figure out which implementation is used in which scenarios. This can make
understanding logic or debugging more difficult.

These costs are generally quite low compared with all the benefits of having code that
is split into distinct layers, but it’s worth remembering that there’s no point in splitting
code just for the sake of it. There can come a point where the costs outweigh the ben-
efits, so it’s good to apply common sense.

 Listing 2.9 shows what the code might look like if the ParagraphFinder class
seen previously were split into more layers by breaking the start and end offset finders
into their own classes behind a common interface. The layers of code are probably
now too thin, because it’s hard to envisage the ParagraphStartOffsetDetector
and ParagraphEndOffsetDetector classes being used by anything other than the
ParagraphFinder class.

class ParagraphFinder {
 private final OffsetDetector startDetector;
 private final OffsetDetector endDetector;
 ...

Listing 2.9 Layers of code that are too thin

46 CHAPTER 2 Layers of abstraction
 List<String> find(String text) {
 List<String> paragraphs = [];
 Int? start = startDetector.detectOffset(text, 0);
 while (start != null) {
 Int? end = endDetector.detectOffset(text, start);
 if (end == null) {
 break;
 }
 paragraphs.add(text.subString(start, end));
 start = startDetector.detectOffset(text, end);
 }
 return paragraphs;
 }
}

interface OffsetDetector {
 Int? detectOffset(String text, Int fromOffset);
}

class ParagraphStartOffsetDetector implements OffsetDetector {
 override Int? detectOffset(String text, Int fromOffset) { ... }
}

class ParagraphEndOffsetDetector implements OffsetDetector {
 override Int? detectOffset(String text, Int fromOffset) { ... }
}

Even if we could imagine the class ParagraphFinder being useful elsewhere, it’s cer-
tainly hard to imagine that anyone would use ParagraphStartOffsetDetector
and not the equivalent ParagraphEndOffsetDetector, because their implementa-
tions need to have a mutually coherent idea of how to detect the start and end of a
paragraph.

 Deciding on the correct thickness of layers of code is important; codebases
become completely unmanageable without having meaningful layers of abstraction. If
we make the layers too thick, then multiple abstractions will end up being merged,
making code that is not modular, reusable, or readable. If we make the layers too thin,
then we can end up dissecting what should be a single layer of abstraction into two,
which can lead to unnecessary complexity and might also mean that adjacent layers
are not as well decoupled as they should be. In general, having layers that are too
thick often causes a worse set of problems than having layers that are too thin, so if
we’re unsure, then it’s often better to err on the side of making the layers too thin.

 As we saw earlier with classes, it’s hard to come up with a single rule or piece of
advice that will tell us definitively whether a layer is too thick, as it will often depend
on the nature of the real-world problem that we’re solving. The best advice is to use
our judgment and to think carefully about whether the layers we have created will
ensure that the code is readable, reusable, generalizable, modular, and testable. And
remember: even for engineers with decades of experience, it can often take a few iter-
ations of designing or reworking the code, before submitting it to the codebase, to get
the layers of abstraction right.

47What about microservices?
2.4 What about microservices?
In a microservices architecture, the solutions to individual problems are deployed as
standalone services rather than just being libraries that are compiled into a single pro-
gram. This means that the system is broken up into a number of smaller programs
that are each dedicated to a set task. These smaller programs are deployed as dedi-
cated services that can be remotely called through APIs. Microservices have a number
of benefits and have become increasingly popular in recent years. They are the go-to
architecture for many organizations and teams now.

 One argument you will sometimes hear is that when using microservices, code
structure and creating layers of abstraction in code are not important. The reason is
that the microservices themselves provide the clean layer of abstraction, and it there-
fore doesn’t really matter how the code inside is structured or broken up. Although
it’s true that microservices typically provide quite clean layers of abstraction, they’re
usually of a size and scope that mean it’s still useful to think properly about the layers
of abstraction within them.

 To demonstrate this, imagine that we work for an online retailer on a team that
develops and maintains a microservice for checking and modifying stock levels. Our
microservice is called whenever any of the following occur:

 A new delivery of stock arrives at a warehouse
 The store frontend needs to know if an item is in stock, so it can display that to

the user
 A customer purchases something

Nominally, this microservice only does one thing: manage stock levels. But it’s proba-
bly immediately obvious that there are multiple subproblems that need solving to do
this “one thing”:

 Dealing with the concept of items (what it’s actually keeping track of)
 Handling the fact that there are different warehouses and locations that the

stock might be in
 The notion that an item might be in stock for customers in one country but not

another, depending on which warehouses they are within delivery range of
 Interfacing with the database that the actual stock levels are stored in
 Interpreting the data returned by the database

All the things that were previously said about solving a problem by breaking it down
into subproblems still applies, even within this microservice. For example, determin-
ing if an item is in stock for a customer involves the following:

 Determining which warehouses are within range of that customer
 Querying the datastore to find the stock of the item in any of those warehouses
 Interpreting the data format returned by the database
 Returning an answer back to the caller of the service

48 CHAPTER 2 Layers of abstraction
What’s more, it’s very likely that other engineers might want to reuse some of this
logic. There are probably other teams within the company that track analytics and
trends to figure out which items the company should discontinue, stock more of, or
run special offers on. For efficiency and latency reasons, they’ll most likely be using a
pipeline to scan directly over the stock database, rather than calling our service, but
they might still need some logic to help them interpret the data returned by the data-
base, so it’d be good if they could just reuse our code that does that.

 Microservices can be an extremely good way to break up a system and make it
more modular, but it usually doesn’t change the fact that we’ll still need to solve multi-
ple subproblems to implement the service. Creating the right abstractions and layers
of code is still important.

Summary
 Breaking code into clean and distinct layers of abstraction makes it more read-

able, modular, reusable, generalizable, and testable.
 We can use functions, classes, and interfaces (as well as other language-specific

features) to break our code into layers of abstraction.
 Deciding how to break code into layers of abstraction requires using our judg-

ment and knowledge about the problem we’re solving.
 The problems that come from having layers that are too thick are usually worse

than the problems that come from having layers that are too thin. If we’re
unsure, it can often be best to err on the side of making layers too thin.

Other engineers
and code contracts
Writing and maintaining software is usually a team effort. Companies that create
software will typically employ multiple engineers: it could be a team of two working
on a single product or thousands of engineers working across hundreds of differ-
ent products. The exact number doesn’t really matter; the point is that other engi-
neers will end up having to interact with the code we write, and in turn, we will have
to interact with the code they write.

 Two of the pillars of code quality introduced in chapter 1 were “avoid surprises”
and “make code hard to misuse.” These relate to what might happen (and what
might go wrong) when other engineers interact with our code. This chapter will
discuss different techniques for conveying important details of the code to other

This chapter covers
 How other engineers will interact with our code

 Code contracts and small print in code contracts

 How minimizing small print can help prevent
misuse and surprises

 If we can’t avoid small print, how checks and
assertions can be used to enforce it
49

50 CHAPTER 3 Other engineers and code contracts
engineers (with some techniques being more reliable than others). This will then be
formalized with the concept of code contracts and small print. The final two sections
of this chapter will go through a worked example of some code that is too open to mis-
use and misinterpretation and show how to improve the code. Chapters 6 and 7 will
provide many more specific examples that build on this chapter.

3.1 Your code and other engineers’ code
If you’re writing code as part of a team, then the code you write will likely be built on
top of layers of code that other engineers have written, and others will likely build lay-
ers on top of your code. If you’ve solved various subproblems along the way and bro-
ken them into clean layers of abstraction, then other engineers will likely also want to
reuse some of these for completely different problems that you may not even have
considered.

 To demonstrate this, imagine that you work for a company that runs an online
magazine where users can find and read articles. You are tasked to write a text-
summarization feature to summarize articles for users as they are trying to find some-
thing to read. You end up writing the code we saw in the previous chapter, with the
TextSummarizer and associated classes. (If you can’t remember the exact code or
skipped that chapter, then no worries.) Figure 3.1 shows how the text-summarization
code you wrote might end up being used in the software. You can see that your code
depends on lower layers of code written by other engineers, and in turn other engi-
neers are depending on your code to solve higher level problems. You can also see
that your code is being reused for multiple pieces of functionality. You may have ini-
tially anticipated its use only for article summarization, but other engineers have gone
on to reuse it (or parts of it) for summarizing comments and for estimating the read-
ing times of articles.

 Another important thing to keep in mind is that requirements change and evolve
all the time: priorities change, new features are added, and systems sometimes need to
be migrated to new technologies. This means that code and software also change all
the time. Figure 3.1 is very much a snapshot in time; it’s unlikely that the piece of soft-
ware will look exactly like this in a year, or even a few months’ time.

 A group of engineers all continually making modifications to a codebase make it a
busy place. And as with any busy place, if things are fragile, they’ll get broken. There’s
a reason you don’t get your fine glassware out when you’re having a massive party, and
why barriers at stadiums tend to be made out of metal and be bolted to the ground:
fragile things and busy places don’t mix well.

 To withstand this kind of “footfall” from other engineers, code needs to be robust
and easy to use. One of the main considerations when writing high-quality code is
understanding and preempting what bad things might happen when other engineers
make changes, or need to interact with your code, and how you can mitigate against
these. Unless you literally work in a one-engineer company and you never forget any-
thing, you can’t write high-quality code without considering other engineers.

51Your code and other engineers’ code
Figure 3.1 The code you write rarely lives in isolation. It will depend on code written by other engineers,
and other engineers will in turn write code that depends on your code.

When writing code, it’s useful to consider the following three things (the next three
subsections will explore them in more detail):

 Things that are obvious to you are not obvious to others.
 Other engineers will inadvertently try to break your code.
 In time, you will forget about your own code.

3.1.1 Things that are obvious to you are not obvious to others

When you get down to writing some code, you have probably already spent hours or
days thinking about the problem you are solving. You may have been through several
stages of design, user experience testing, product feedback, or bug reports. You might
be so familiar with your logic that things seem obvious, and you barely need to think
about why something is the way it is or why you are solving the problem the way you are.

 But remember, at some point another engineer will probably need to interact with
your code, make changes to it, or make changes to something it depends on. They will
not have had the benefit of all your time to understand the problem and think about

Your code

Other engineers’ code

ModelRepositoryModelRunner

TextPredictionModel

ModelBasedScorer TextImportanceScorerParagraphFinder

TextSummarizerTextSummarizerFactory

ArticleSummarizer

ArticleSummaryArticleListEndPoint

ReadingTimeEstimator

DatabaseWrapper UserCommentEndPoint

UserComment

CommentSummarizer

52 CHAPTER 3 Other engineers and code contracts
how to solve it. The things that seemed completely obvious to you as you were writing
the code are very likely not obvious to them.

 It’s useful to always consider this and make sure your code explains how it should
be used, what it does, and why it is doing it. As you will learn later in this chapter and
those that follow, this doesn’t mean write loads of comments. There are often better
ways to make code understandable and self-explanatory.

3.1.2 Other engineers will inadvertently try to break your code

Assuming that other engineers will inadvertently try to break your code may seem
overly cynical, but, as we just saw, your code doesn’t live in a vacuum; it probably
depends on multiple other pieces of code, and these in turn depend on even more
pieces of code. And there are probably yet more pieces of code that depend on your
code. Some of these pieces of code will be in constant flux as other engineers add fea-
tures, refactor, and make modifications. So, far from living in a vacuum, your code in
fact lives on top of constantly shifting foundations, with yet more constantly moving
parts built on top of it.

 Your code may mean the world to you, but most other engineers at your company
probably don’t know much about it, and when they do stumble upon it, they won’t
necessarily have prior knowledge of why it exists or what it does. It’s highly likely that
another engineer will, at some point, add or modify some code in a way that uninten-
tionally breaks or misuses your code.

 As we saw in chapter 1, engineers generally make changes to the codebase in a
local copy and then submit it to the main codebase. If the code doesn’t compile, or if
tests fail, then they won’t be able to submit their change. If another engineer makes a
change that breaks or misuses your code, then you want to ensure that their change
does not get submitted into the main codebase until they’ve fixed the issue they’ve
caused. The only two reliable ways to do this are to ensure that, when something is
broken, either the code stops compiling or some tests start failing. A lot of the consid-
erations around writing high-quality code are ultimately about ensuring that one of
these two things happens when something is broken.

3.1.3 In time, you will forget about your own code

The details of your code may seem so fresh and foremost in your mind right now that
you can’t imagine ever forgetting them, but after time they will no longer be fresh in
your mind, and you will start to forget things. When a new feature comes along, or a
bug gets assigned to you in a year’s time from now, you might have to modify that code
you wrote and may no longer remember all the ins and outs of it.

 All the words that were just said about things not being obvious to others, or about
others breaking your code, will likely apply to you at some point. Looking at code that
you wrote a year or two ago is not much different from looking at code written by
someone else. Make sure your code is understandable even to someone with little or
no context, and make it hard to break. You’ll not only be doing everyone else a favor,
but you’ll be doing your future self one too.

53How will others figure out how to use your code?
3.2 How will others figure out how to use your code?
When another engineer needs to make use of your code or modify some code that is
depending on your code, they will need to figure out how to use your code and what it
does. Specifically, they will need to understand the following:

 In what scenarios they should call the various functions you provide
 What the classes you have created represent and when they should be used
 What values they should call things with
 What actions your code will perform
 What values your code can return

As you just read in the previous section, after a year there is a good chance that you your-
self will forget all these details about your code, so you can consider your future self as
essentially being another engineer for the sake of everything written in this book.

 In order to figure out how to use your code, there are a few things that another
engineer could do:

 Look at the names of things (functions, classes, enums etc.).
 Look at the data types of things (function and constructor parameter types and

return value types).
 Read any documentation or function-/class-level comments.
 Come and ask you in person, or over chat/email.
 Look at your code (the nuts-and-bolts implementation details of the functions

and classes you have written).

As we’ll see in the following subsections, only the first three of these are actually prac-
tical, and within those three the naming of things and data types tend to be more reli-
able than documentation.

3.2.1 Looking at the names of things

In practice, looking at the names of things is one of the main ways in which engineers
figure out how to use a new piece of code. The names of packages, classes, and func-
tions read a bit like the table of contents of a book: they’re a convenient and quick way
to find code that will solve a subproblem. When using the code, it’s very hard to
ignore the names of things: if a function is called removeEntry() then it’s hard to
confuse it with a function called addEntry().

 Naming things well is therefore one of the best ways to convey to another engineer
how your code should be used.

3.2.2 Looking at the data types of things

If done properly, looking at the data types of things can be a very reliable way of ensur-
ing your code is used correctly. In any compiled, statically typed language, engineers
have to be aware of the data types of things and get them correct or the code will
not even compile. Therefore, enforcing how your code can be used using the type

54 CHAPTER 3 Other engineers and code contracts
system is one of the best ways to ensure that other engineers can’t misuse or miscon-
figure your code.

3.2.3 Reading documentation

Documentation about how to use your code can exist in more than one form and
includes the following:

 Informal function and class-level comments
 More formal in-code documentation (such as JavaDoc)
 External documentation (such as a README.md, a web page, or a document

with instructions)

These can all be extremely useful but are only somewhat reliable as a way of ensuring
that others will know how to use your code correctly:

 There’s no guarantee that other engineers will read these, and in fact they
often don’t, or they don’t read them fully.

 Even if they do read them, they might misinterpret them. You may have used
terms that they are unfamiliar with or wrongly assumed the other engineers’
level of familiarity with the problem your code solves.

 Your documentation may be out of date. Engineers regularly forget to update
documentation when they make changes to code, so it is inevitable that some
amount of documentation for code will be out of date and incorrect.

3.2.4 Asking you in person

If you work in a team, then you will probably find that other engineers often ask you
questions about how to use your code, and if the code is fresh in your mind then this
approach can be quite effective. It can’t be relied on as a way of explaining how to use
a piece of code though:

 The more code you write, the more time you’ll spend answering questions about
it. Eventually you will run out of hours in the day to answer all these questions.

 You might be on vacation for two weeks, meaning people obviously can’t ask
you anything.

 After a year, you yourself will probably forget about the code, so there is only
actually a limited timeframe in which this approach would even work.

 You might leave the company, and then the knowledge about how to use the
code would be forever lost.

3.2.5 Looking at your code

If another engineer were to look at the nuts-and-bolts implementation details of your
code, then they would probably get the most definitive answer about how to use it, but
this approach doesn’t scale and quickly becomes impractical. When another engineer
decides to use your code as a dependency, it is probably just one of many pieces of
code they are depending on. If they always have to look at the implementation details

55Code contracts
of every dependency to figure out how to use them all, then they will end up having to
read through thousands of lines of existing code every time they implement a feature.

 It gets worse though. These dependencies will have dependencies of their own, so
if every engineer working on the codebase had taken the attitude, “You’ll have to read
my code to understand how to use it,” then it would likely be necessary to read the
implementations of some or all of the sub-dependencies too, and there might be hun-
dreds of these. Before you know it, every engineer would need to read hundreds of
thousands of lines of code just to implement a moderately sized feature.

 The whole point in creating layers of abstraction is to ensure that engineers have
to deal with only a few concepts at a time and that they can use a solution to a sub-
problem without having to know exactly how that problem was solved. Requiring engi-
neers to read implementation details to know how to use a piece of code obviously
negates a lot of the benefits of layers of abstraction.

3.3 Code contracts
You may have previously come across the term programming by contract (or design by
contract1). It’s a principle that formalizes some of the concepts that were discussed in
the previous section about how others can know how to use your code and what they
can expect your code to do. Under this philosophy, engineers think about the inter-
actions between different pieces of code as though they were a contract: callers are
required to meet certain obligations, and in return, the code being called will return
a desired value or modify some state. Nothing should be unclear or a surprise
because everything should be defined in this contract.

 Engineers sometimes find it useful to formally divide the terms on their code’s
contract into different categories:

 Preconditions—Things that should be true before calling the code, such as what
state the system should be in and what inputs should be supplied to the code

 Postconditions —Things that should be true after the piece of code has been
called, such as the system being placed into a new state or certain values being
returned

 Invariants—Things that should remain unchanged when comparing the state
of the system before and after the code was called

Even if you’re not deliberately programming by contract or you’ve never even heard
of the term before, the code you write will almost certainly have some kind of con-
tract. If you write a function that has any input parameters, returns a value, or modi-
fies some state, then you have created a contract because you are placing an
obligation onto the caller of the code to set something up or provide an input (a pre-
condition) and giving them an expectation about what will happen or be returned (a
postcondition).

1 The term design by contract was first introduced by Bertrand Meyer in the 1980s and is a central feature of the
Eiffel programming language and methodology.

56 CHAPTER 3 Other engineers and code contracts
 Problems arise with code contracts when engineers are unaware of some or all of
the terms of them. When you are writing code, it’s important to think about what the
contract is and how you will ensure that anyone using your code will be aware of it and
follow it.

3.3.1 Small print in contracts

In real life, contracts tend to have a mixture of things that are unmistakably obvious and
things that are in the small print and therefore less obvious. Everyone knows that they
really should read the small print of every contract they enter, but most people don’t.
Do you carefully read every sentence of every terms and conditions text thrown at you?

 To demonstrate this distinction between things that are obvious and things that are
in the small print, let’s consider a real-world example of a contract: using an electric
scooter rental app. After having signed up and entered your credit card number, the
app allows you to find a scooter near you, reserve it, ride it, and then end the rental
when you’re done. The screen where you book the rental looks like figure 3.2. When
you click RESERVE you are entering a contract.

Figure 3.2 Renting an electric scooter using an app is a real-world example of entering
a contract. What you are renting and the cost are unmistakable parts of the contract.

We can dissect this contract into the parts that are unmistakable and the parts that are
small print:

 The unmistakable parts of the contract:
– You are renting an electric scooter.
– The rental will cost $10/hour.

 The small print of the contract. If you were to click the Terms and Conditions link
and read the small print (figure 3.3), you would find that it says the following:

– If you crash the scooter, you’ll have to pay for it.

When you click RESERVE,
you are entering a contract.

Clicking on the Terms and Conditions link
reveals the small print for the contract.

RESERVE

Scooter rental

$10 per hour
By clicking reserve, you
agree to our Terms and

Conditions

Scooter rental

$10 p
By clic
agre

It’s unmistakably obvious that you’re renting
a scooter and that it costs $10 per hour.

57Code contracts
– You’ll be fined $100 if you take the scooter beyond the city limits.
– If you go faster than 30 mph on the scooter, you will be fined $300, as this

damages the scooter’s motor. There is no speed restrictor on the scooter, and
it can easily exceed this speed, so users are solely responsible for monitoring
their speed and not going faster than this.

The first two of the terms in the small print are not really that surprising; we could
probably have guessed that there’d be something like that in there. The third one
about not going faster than 30 mph, on the other hand, is potentially a gotcha, and
unless you’d read the small print carefully and knew this, it could result in a surprising
and hefty fine.

Figure 3.3 Contracts usually contain small print, such as things in the terms
and conditions.

When defining the contract for a piece of code there are similarly parts that are
unmistakable and parts that are more like small print:

 The unmistakable parts of the contract:

– Function and class names—A caller can’t use the code without knowing these.

– Parameter types—The code won’t even compile if the caller gets these wrong.
– Return types—A caller has to know the return type of a function to be able to

use it, and the code will likely not compile if they get it wrong.
– Any checked exceptions (if the language supports them)—The code won’t com-

pile if the caller doesn’t acknowledge or handle these.

 The small print:
– Comments and documentation—Much like small print in real contracts, people

really should read these (and read them fully), but in reality, they often
don’t. Engineers need to be pragmatic to this fact.

RESERVE

Scooter rental

$10 per hour
By clicking reserve, you
agree to our Terms and

Conditions

Scooter rental

$10 p
By clic
agre

If you crash the scooter, you’ll have to pay for it.

Terms and Conditions

You’ll be fined $100 if you take the scooter beyond
the city limits.

If you go faster than 30 mph on the scooter, you will
be fined $300, as this damages the scooter’s motor.
There is no speed restrictor on the scooter, and it
can easily exceed this speed, so users are solely
responsible for monitoring their speed and not going
faster than this.

58 CHAPTER 3 Other engineers and code contracts
– Any unchecked exceptions—If these are listed in comments then they are small
print. Sometimes they won’t even be in the small print, if for example a func-
tion a few layers down throws one of these and the author of a function far-
ther up forgot to mention it in their documentation.

Making the terms of a code contract unmistakable is much better than relying on the
small print. People very often don’t read small print, and even if they do they might
only skim read it and get the wrong idea. And, as discussed in the previous section,
documentation has a habit of becoming out-of-date, so the small print isn’t even
always correct.

3.3.2 Don’t rely too much on small print

Small print in the form of comments and documentation is often overlooked. There
is, therefore, a high chance that other engineers using a piece of code will not be fully
aware of all the things that the small print states. Using small print is, therefore, not a
reliable way to convey the contract of a piece of code. Relying too much on small print
is likely to produce fragile code that is too easy to misuse, and that causes surprises,
and as we established in chapter 1, both of these are enemies of high-quality code.

 There will be occasions when relying on small print is unavoidable; some problems
will invariably have caveats that need explaining, or we might have no choice but to
depend on someone else’s bad code, which forces our code to do something slightly
weird. In these scenarios we should absolutely write clear documentation to explain
this to other engineers and do everything we can to encourage them to read it. But,
despite the importance of the documentation, there is still, unfortunately, a high
chance that other engineers will not read it or that over time it will become out-of-
date, so it’s really not ideal. Chapter 5 will discuss comments and documentation in
more detail. In general, it’s a good idea to document things that might otherwise not
be clear, but it’s usually best not to rely too much on other engineers actually reading
it. If it’s possible to make things clear using the unmistakably obvious parts of the code
contract instead, then this is often preferable.

 To demonstrate this, the following example (listing 3.1) shows code for a class to
load and access some user settings. It defines a contract for how the class should be
used, but it relies heavily on callers of the class having read all the small print to be
able to use it: after constructing the class, callers are required to call a function to load
some settings and then an initializer function. If they fail to do all these things in the
right order, then the class is in an invalid state.

class UserSettings {

 UserSettings() { ... }

Listing 3.1 Code with lots of small print

59Code contracts
 // Do not call any other functions until the settings have
 // been successfully loaded using this function.
 // Returns true if the settings were successfully loaded.
 Boolean loadSettings(File location) { ... }

 // init() must be called before calling any other functions, but
 // only after the settings have been loaded using loadSettings().
 void init() { ... }

 // Returns the user's chosen UI color, or null if they haven't
 // chosen one, or if the settings have not been loaded or
 // initialized.
 Color? getUiColor() { ... }
}

Let’s spell the contract here out:

 The unmistakable parts of the contract:

– The class is called UserSettings, so it obviously contains user settings.
– getUiColor() almost certainly returns the UI color chosen by the user. It

can return either a color or null. Without reading the comments, there is
some ambiguity about what null means, but the most likely guess might be
that it means the user didn’t choose a color.

– loadSettings() accepts a file and returns a Boolean. Even without read-
ing the comment, a likely guess is that this returning true indicates success
and false indicates failure.

 The small print:
– The class needs to be set up with a very specific series of function calls: first

loadSettings() needs to be called. If it returns true, then init() needs
to be called, and only then can the class be used.

– If loadSettings() returns false, then no other functions in the class
should be called.

– getUiColor() returning null can in fact indicate one of two things: that the
user didn’t choose a color or that the class hasn’t been set up yet.

This is a horrible contract. If an engineer using this class doesn’t very carefully read all
the small print, then there is a high chance that they will not set this class up correctly.
If they don’t set the class up correctly, then this might not even be obvious, because the
function getUiColor() has overloaded the meaning of null (and they wouldn’t know
this unless they read the small print).

 To demonstrate how this can be problematic, consider the code in listing 3.2. If
userSettings has not been correctly set up before calling the setUiColor() func-
tion, then the program won’t crash, and it’ll do something vaguely sensible, but there
is clearly a bug here: we’re ignoring the user’s chosen UI color.

Pieces of documentation
like these are small print

in the code’s contract.
A null return value can mean one of two

things here: the user didn’t choose a color or
the class has not been fully initialized.

60 CHAPTER 3 Other engineers and code contracts

void setUiColor(UserSettings userSettings) {
 Color? chosenColor = userSettings.getUiColor();
 if (chosenColor == null) {
 ui.setColor(DEFAULT_UI_COLOR);
 return;
 }
 ui.setColor(chosenColor);
}

Figure 3.4 enumerates all the ways in which this code can be misconfigured and
potentially cause bugs. Currently, the only mitigation against this misuse is the small
print, and as we established, small print is generally not a reliable way to convey a code
contract. The code as is creates a high chance that bugs will creep into the software.

Figure 3.4 The more ways there are to misuse a piece of code, the more likely it is to be
misused, and the more likely there are to be bugs in the software.

HOW TO ELIMINATE THE SMALL PRINT

We saw previously how relying on small print is unreliable because it’s too easily over-
looked. In the real-world contract example with the scooter that we saw earlier, it

Listing 3.2 Code with a potential bug in it

Uses a default color if getUiColor()
returns null. This can happen if either
the user didn’t choose a color or if the
UserSettings class is in an invalid state.

Class in invalid state,
potential bugs

loadSettings()
called?

New UserSettings()

loadSettings()
returned

true?

init()
called?

Yes

No

Yes

Yes

No

No

Class in valid state

Failure scenario
handled?

No

Class in invalid state,
potential bugs

Class in invalid state,
potential bugs

Yes

Class in invalid state, but
we’d hope no one uses it

61Code contracts
would be better if going faster than 30 mph were just impossible. The scooter com-
pany could fit a speed restrictor to the scooter so that the motor stopped supplying
power whenever the speed approached 30 mph and started supplying power again
only once the speed dropped. If they did this, then there’d be no need for a clause in
the small print, and it would probably completely eradicate the problem of the
scooter motors getting damaged in this way.

 We can apply the same principle to code: it’s better to just make it impossible to do
the wrong thing rather than relying on small print to try to ensure that other engi-
neers use a piece of code correctly. It’s often possible to shift parts of the code con-
tract from small print to being impossible (or at least unmistakable) by thinking
carefully about what states the code can get into or what data types it takes as input or
returns. The aim is to ensure that if the code is misused or misconfigured, then it
won’t even compile.

 The UserSettings class could be modified to use a static factory function that
ensures that it’s only possible to get a fully initialized instance of the class. This means
that any piece of code anywhere else that uses an instance of UserSettings is guar-
anteed to have a fully initialized version of it. In the following example (listing 3.3),
the UserSettings class has been modified in the following ways:

 A static factory function called create() has been added. This handles the
loading of settings and initialization and only ever returns an instance of the
class that’s in a valid state.

 The constructor has been made private to force code external to the class to use
the create() function.

 The loadSettings() and init() functions have been made private to pre-
vent code external to the class from calling them, which could otherwise place
an instance of the class into an invalid state.

 Because an instance of the class is now guaranteed to be in a valid state, the
getUiColor() function no longer needs to overload the meaning of null. A
null return value now only means that the user didn’t provide a color.

class UserSettings {

 private UserSettings() { ... }

 static UserSettings? create(File location) {
 UserSettings settings = new UserSettings();
 if (!settings.loadSettings(location)) {
 return null;
 }
 settings.init();
 return settings;
 }

Listing 3.3 Code with almost no small print

The constructor is private.
This forces engineers to use
the create() function instead.

Calling this function is the
only way to create an
instance of UserSettings.

If loading the settings failed, then
return null. This prevents anyone
ever getting an instance of this
class that’s in an invalid state.

62 CHAPTER 3 Other engineers and code contracts
 private Boolean loadSettings(File location) { ... }

 private void init() { ... }

 // Returns the user's chosen UI color, or null if they haven't
 // chosen one.
 Color? getUiColor() { ... }
}

These changes have successfully eliminated nearly all the small print from the User-
Settings class’s contract, and instead made it impossible to create an instance of the
class in an invalid state. The only bit of small print that remains is to explain what a
null return value from getUiColor() signifies, but even this is probably not needed,
as most users of the class would probably guess this is what null means, and it’s no lon-
ger overloaded with also indicating that the class is in an invalid state.

 Figure 3.5 shows how the class can now be used, in particular, how it’s now impossi-
ble to acquire an instance of the class in an invalid state. If you have some familiarity
with this already, then you may have spotted that the technique employed here was to
eliminate any state or mutability from being exposed outside of the class.

NOTE: STATE AND MUTABILITY? If you’re not familiar with the terms state or
mutability, then you will be by the end of this book. Many ways of improving
code quality revolve around minimizing them. An object’s state refers to any
values or data held within it. An object is mutable if it’s possible to modify any
of these values after having created the object. Conversely if it’s not possible
to modify any of these values after creation, then an object is immutable.
We’ll discuss this in detail in chapter 7.

Figure 3.5 If code is impossible to misuse, then it’s a lot less likely
that bugs will creep into the software when other engineers need to use it.

Any functions that change the
class’s state are private.

A null return value can now
only mean one thing: the user
didn’t choose a color.

New UserSettings()

Returned
null?

No

Yes

Impossible—Doesn’t compile due to
constructor being private

UserSettings.create(file)

Null safety forces caller to be aware
of this failure scenario

Class in valid state

(Use optional type if language doesn't
support null safety.)

63Checks and assertions
It’s worth mentioning that the UserSettings class is still not perfect. For example,
indicating that loading the settings failed by returning null doesn’t make the code
very debuggable; it would probably be useful to have error information about why it
failed. The next chapter will explore ways of handling errors, and we’ll see various
alternatives that could be used here instead.

 The code in this section is just one example of how too much small print can lead
to poor quality code that is easy to misuse and that causes surprises. There are numer-
ous other ways in which too much small print can make code fragile and error prone,
and we’ll explore a bunch of them in later chapters.

3.4 Checks and assertions
An alternative to using the compiler to enforce a code contract is to use runtime
enforcement instead. This is generally not as robust as compile-time enforcement,
because discovering a breach of the code contract will rely on a test (or a user) encoun-
tering the issue while running the code. This is in contrast to compile-time enforce-
ment, which makes breaching the contract logically impossible in the first place.

 Nonetheless there are sometimes scenarios where there is no practical way to
enforce a contract using the compiler. And when this happens, enforcing the contract
with a runtime check is better than not enforcing the contract.

3.4.1 Checks

A common way to enforce the conditions of a code contract is to use checks. These are
additional logic that check that a code’s contract has been adhered to (such as con-
straints on input parameters, or setup that should have been done), and if it hasn’t,
then the check throws an error (or similar) that will cause an obvious and unmissable
failure. (Checks are closely related to failing fast, which is discussed in the next chapter.)

 To continue the electric scooter analogy, adding a check would be a bit like adding
a failsafe to the scooter’s firmware that means that the scooter will completely shut
down if the rider hits 30 mph. The rider would then have to pull over and find the
hard reset button and wait for the scooter to reboot before they could continue. This
prevents the motor getting damaged, but it causes the scooter to abruptly shut down,
which is at best kind of annoying and at worst kind of dangerous, if, for example, the
rider were in a column of traffic on a busy road. It’s still probably better than damag-
ing the motor and getting fined $300, but the solution using a speed restrictor was
nicer, because it made it impossible for the bad situation to happen in the first place.

 The naming of checks is often divided into subcategories based on what kind of
contract condition they are enforcing:

 Precondition checks—For example, checking an input argument is correct, that
some initialization has been performed, or more generally that the system is in
a valid state before running some code

 Postcondition checks—For example, checking a return value is correct or that the
system is in a valid state after running some code

64 CHAPTER 3 Other engineers and code contracts
We saw that the UserSettings class could be made less error prone by making it
impossible to misconfigure. An alternative might be to use precondition checks. If the
author of the class had done this, then code would look something like the example
in the following listing.

class UserSettings {

 UserSettings() { ... }

 // Do not call any other functions until the settings have
 // been successfully loaded using this function.
 // Returns true if the settings were successfully loaded.
 bool loadSettings(File location) { ... }

 // init() must be called before calling any other functions, but
 // only after the settings have been loaded using loadSettings().
 void init() {
 if (!haveSettingsBeenLoaded()) {
 throw new StateException("Settings not loaded");
 }
 ...
 }

 // Returns the user's chosen UI color, or null if they haven't
 // chosen one.
 Color? getUiColor() {
 if (!hasBeenInitialized()) {
 throw new StateException("Settings not initialized");
 }
 ...
 }
}

This is an improvement over the original code with loads of small print because it’s
less likely that bugs will go unnoticed; if the class is used before being set up, then a
loud failure will happen. But this is less ideal than the solution we saw that made mis-
use impossible.

NOTE: CHECKS IN DIFFERENT LANGUAGES Listing 3.4 implemented a precondi-
tion check in a custom way by throwing a StateException. Some languages
have built-in support and therefore a nicer syntax for checks, while others
require a more manual approach or use of a third-party library. If you decide
to use checks, then make sure you look up the best way of implementing
them in whatever language you’re using.

The hope with a check is that if someone is misusing the code it will be revealed
during development, or during testing, and it will be noticed and fixed before the
code is shipped to customers or used in the wild. This is much better than the

Listing 3.4 Using checks to enforce a contract

Exceptions are
thrown if the
class is used in
an invalid way.

65Checks and assertions
program silently getting into a bad state that might only manifest as weird bugs that
aren’t immediately obvious. But the effectiveness of checks is not guaranteed:

 If the condition being checked is broken only in some obscure scenario that no
one thought to test (or that fuzz testing doesn’t simulate), then the bug may
still not be revealed until the code is released and in the hands of real users.

 Despite the check causing a loud failure, there is still a risk that no one notices.
Exceptions might be caught at some higher level in the program and just logged
to prevent full on crashes. If an engineer working on the code didn’t bother to
check these logs, then they might not notice. If this happens, then it is a sign of
a pretty serious problem with a team’s development practices (or exception han-
dling), but stuff like this does unfortunately happen more often than it should.

Sometimes having small print in a piece of code’s contract is unavoidable, and in
these instances it can be a good idea to add checks to ensure that the contract is
adhered to. But it’s better to just avoid small print in the first place if possible. If we
find ourselves adding lots of checks to a piece of code, then it might be a sign that we
should instead think about how to eliminate the small print.

3.4.2 Assertions

Many languages have built-in support for assertions. Assertions are conceptually very
similar to checks in that they are a way to try to enforce that the code contract is
adhered to. When the code is compiled in a development mode, or when tests are
run, assertions behave in much the same way as checks: a loud error or exception will
be thrown if a condition is broken. The key difference between assertions and checks
is that assertions are normally compiled out once the code is built for release, mean-
ing no loud failure will happen when the code is being used in the wild. The reason
for compiling them out when the code is released can be twofold:

 To improve performance—Calculating whether a condition has been broken obvi-
ously requires some CPU cycles. If we have an assertion in a piece of code that is

Fuzz testing
Fuzz testing is a type of testing that tries to generate inputs that might reveal bugs
or misconfiguration in a piece of code or software. For example, if we have a piece of
software that takes a user-provided input in the form of a string, then a fuzz test might
generate lots of different random strings and provide them as input, one after
another, to see if a failure happens or an exception is thrown. If, for example, a string
containing a certain character causes the program to crash, then we’d hope that fuzz
testing would reveal this.

If we use fuzz testing, then including checks (or assertions, see next section) in our
code, can help increase the chance that the fuzz testing will reveal any misconfigura-
tion or bugs, because fuzz testing usually relies on an error or exception being thrown
and won’t catch more subtle bugs that simply results in weird behavior.

66 CHAPTER 3 Other engineers and code contracts
run a lot, then it can noticeably degrade overall performance of a piece of soft-
ware.

 To make code less likely to fail—Whether this is a valid motivation will really
depend on our particular application. This increases the chance that bugs will
go unnoticed, but if we are working on a system where availability is more
important than avoiding some potentially buggy behavior, then it might be the
right trade-off.

There is usually a way to leave assertions enabled even in release builds of the code,
and many development teams do this. In this case, assertions are not really any differ-
ent from checks, except for some details about what kind of errors or exceptions they
might throw.

 If the author of the UserSettings class has used assertions instead of checks,
then the getUiColor() function would look something like the following listing.

class UserSettings {
 ...

 // Returns the user's chosen UI color, or null if they haven't
 // chosen one.
 Color? getUiColor() {
 assert(hasBeenInitialized(), “Settings not initialized");
 ...
 }
}

What was said about checks is also true of assertions: when we have small print in our
code’s contract it’s good to enforce it. But it’s even better to just avoid small print in
the first place.

Summary
 Codebases are in a constant state of flux, with multiple engineers typically mak-

ing changes.
 It’s useful to think about how other engineers might break or misuse code and

engineer it in a way that minimizes the chances of this or makes it impossible.
 When we write code, we are invariably creating some kind of code contract.

This can contain things that are unmistakably obvious and things that are more
like small print.

 Small print in code contracts is not a reliable way to ensure other engineers
adhere to the contract. Making things unmistakably obvious is usually a better
approach.

 Enforcing a contract using the compiler is usually the most reliable approach.
When this is not feasible, an alternative is to enforce a contract at runtime using
checks or assertions.

Listing 3.5 Using an assertion to enforce a contract

The assertion will cause an error
or exception to be thrown if the

class is used in an invalid way.

Errors
The environment in which our code runs tends to be imperfect: users will provide
invalid inputs, external systems will go down, and our code and other code around
it will often contain some number of bugs. Given this, errors are inevitable; things
can and will go wrong, and as a result we can’t write robust and reliable code with-
out thinking carefully about error cases. When thinking about errors, it’s often use-
ful to distinguish between errors from which a piece of software might want to
recover and those from which there is no sensible way to recover. This chapter
starts by exploring this distinction before exploring techniques we can use to
ensure that errors don’t go unnoticed and that they’re handled appropriately.

 Talking about errors, and in particular how to signal and handle them, is a bit of
a can of worms, and we’re about to open it. Many software engineers and even
programming language designers have different (and sometimes strongly held)

This chapter covers
 The distinction between errors a system can

recover from and those it cannot recover from

 Failing fast and failing loudly

 Different techniques for signaling errors and
considerations for choosing which to use
67

68 CHAPTER 4 Errors
opinions about how code should signal and handle errors. The second half of this
chapter attempts to give a reasonably broad overview of the main techniques you’re
likely to encounter and the arguments around using them. But just to warn you, this is
a big and somewhat divisive topic, and as a result this chapter is relatively long.

4.1 Recoverability
When thinking about a piece of software, it’s often necessary to think about whether
there is a realistic way to recover from a particular error scenario. This section will
describe what is meant by an error being one that can or cannot be recovered from. It
will then go on to explain how this distinction is often context dependent, meaning
engineers have to think carefully about how their code might be used when deciding
what to do when an error occurs.

4.1.1 Errors that can be recovered from

Many errors are not fatal to a piece of software, and there are sensible ways to handle
them gracefully and recover. An obvious example of this is if a user provides an invalid
input (such as an incorrect phone number); it would not be a great user experience
if, upon entering an invalid phone number, the whole application crashed (poten-
tially losing unsaved work). Instead, it’s better to just provide the user with a nice error
message stating that the phone number is invalid and ask them to enter a correct one.

 In addition to things like invalid user inputs, other examples of errors that we
likely want a piece of software to recover from are the following:

 Network errors—If a service that we depend on is unreachable, then it might be
best to just wait a few seconds and retry, or else ask the user to check their net-
work connection if our code runs on the user’s device.

 A noncritical task error—For example, if an error occurs in a part of the software
that just logs some usage statistics, then it’s probably fine to continue execution.

Generally, most errors caused by something external to a system are things that the
system as a whole should probably try to recover from gracefully. This is because they
are often things that we should actively expect to happen: external systems and net-
works go down, files get corrupted, and users (or hackers) will provide invalid inputs.

 Note that this is referring to the system as a whole. As we’ll see in a bit, low-level
code is often not well placed to try and recover from errors, and it’s often necessary to
signal an error to higher level code that knows how the error should be handled.

4.1.2 Errors that cannot be recovered from

Sometimes errors occur and there is no sensible way for a system to recover from
them. Very often these occur due to a programming error where an engineer some-
where has “screwed something up.” Examples of these include the following:

 A resource that should be bundled with the code is missing.
 Some code misuses another a piece of code, such as the following examples:

– Calling it with an invalid input argument
– Not pre-initializing some state that is required

69Recoverability
If there is no conceivable way that an error can be recovered from, then the only sen-
sible thing a piece of code can do is try to limit the damage and maximize the likeli-
hood that an engineer notices and fixes the problem. Section 4.2 discusses the
concepts of failing fast and failing loudly, which are central to this.

4.1.3 Often only the caller knows if an error can be recovered from

Most types of errors manifest when one piece of code calls another piece of code.
Therefore, when dealing with an error scenario, it’s important to think carefully about
what other code might be calling our code, in particular the following:

 Would the caller potentially want to recover from the error?
 If so, how will the caller know that they need to handle the error?

Code is often reused and called from multiple places, and if we’re aiming to create
clean layers of abstraction, then it’s generally best to make as few assumptions as possi-
ble about potential callers of our code. This means that when we’re writing or modify-
ing a function, we are not always in a position to know whether an error state is one
that can or should be recovered from.

 To demonstrate this, consider listing 4.1. It contains a function that parses a phone
number from a string. If the string is an invalid phone number, then that constitutes
an error, but can a piece of code calling this function (and the program as whole)
realistically recover from this error?

class PhoneNumber {
 ...
 static PhoneNumber parse(String number) {
 if (!isValidPhoneNumber(number)) {
 ... some code to handle the error ...
 }
 ...
 }
 ...
}

The answer to the question of whether the program can recover from this error is that
we don’t know unless we know how this function is being used and where it’s being
called from.

 If the function is being called with a hard-coded value that is not a valid phone
number, then it’s a programming error. This is likely not something that the program
can recover from. Imagine this is being used in some call-forwarding software for a
company that redirects every call to the head office; there is absolutely no way the pro-
gram can recover from this:

PhoneNumber getHeadOfficeNumber() {
 return PhoneNumber.parse("01234typo56789");
}

Listing 4.1 Parsing a phone number

Can the program
recover from this?

70 CHAPTER 4 Errors
Conversely, if the function is being called with a user-provided value (as in the follow-
ing snippet) and that input is an invalid phone number, then it is probably something
that the program can and should recover from. It would be best to show a nicely for-
matted error message in the UI informing the user that the phone number is invalid.

PhoneNumber getUserPhoneNumber(UserInput input) {
 return PhoneNumber.parse(input.getPhoneNumber());
}

Only the caller of the PhoneNumber.parse() function is in a position to know whether
the phone number being invalid is something that the program can recover from. In sce-
narios like this, the author of a function like PhoneNumber.parse() should assume
that the phone number being invalid is something that callers may want to recover from.

 More generally, if any of the following are true, then an error caused by anything
supplied to a function should probably be considered as something that a caller might
want to recover from:

 We don’t have exact (and complete) knowledge about everywhere our function
might be called from and where values supplied in those calls originate from.

 There’s even the slimmest chance that our code might be reused in the future,
meaning our assumptions about where it’s called from and the origins of any
values may become invalid.

The only real exception to this is where the code’s contract makes it clear that a cer-
tain input is invalid and a caller has an easy and obvious way to validate the input
before calling the function. An example of this might be an engineer calling a list get-
ter with a negative index (in a language that doesn’t support this); it should be obvi-
ous that a negative index would be invalid, and the caller has an easy and obvious way
to check this before calling the function if there’s a risk that the index could be nega-
tive. For scenarios like this, we can probably safely assume it’s a programming error
and treat it as something that cannot be recovered from. But it’s still good to appreci-
ate that what might seem obvious to us about how our code should be used might not
be obvious to others. If the fact that a certain input is invalid is buried deep in the
small print of the code contract, then other engineers are likely to miss it.

 Determining that callers might want to recover from an error is all well and good,
but if callers are not even aware that the error can happen, then they’re unlikely to
handle it properly. The next section explains this in more detail.

4.1.4 Make callers aware of errors they might want to recover from

When some other code calls our code, it will often have no practical way of knowing
beforehand that its call will result in an error. For example, what is or isn’t a valid
phone number might be quite a complicated thing to determine. “01234typo56789”
might be an invalid phone number, but “1-800-I-LOVE-CODE” might be perfectly
valid, meaning the rules determining this are, clearly, somewhat complicated.

 In the previous phone number example (repeated in listing 4.2), the Phone-
Number class provides a layer of abstraction for dealing with the ins and outs of phone

71Robustness vs. failure
numbers; callers are shielded from the implementation details, and thus complexity,
of the rules that determine what is/isn’t a valid phone number. It would therefore be
unreasonable to expect callers to call PhoneNumber.parse() with only valid inputs,
because the whole point in the PhoneNumber class is to prevent callers from having to
worry about the rules that determine this.

class PhoneNumber {
 ...
 static PhoneNumber parse(String number) {
 if (!isValidPhoneNumber(number)) {
 ... some code to handle the error ...
 }
 ...
 }
 ...
}

Further to this, because callers to PhoneNumber.parse() are not experts on phone
numbers, they might not even realize that the concept of a phone number being
invalid exists, or even if they do, they might not expect validation to happen at this
point. They might expect it to happen only when the number is dialed, for example.

 The author of the PhoneNumber.parse() function should therefore make sure
that callers are aware of the possibility that an error might occur. Failure to do this
could result in surprises when the error does occur and no one has written any code
to actually handle it. This might lead to user-visible bugs or failures in business-critical
logic. Sections 4.3 and 4.5 cover how we can ensure that a caller is aware that an error
can happen in detail.

4.2 Robustness vs. failure
When an error occurs, there is often a choice to be made between

 failing, which could entail either making a higher layer of code handle the
error or else making the entire program crash, or

 trying to deal with the error and carrying on.

Carrying on can sometimes make code more robust, but it can also mean that errors
go unnoticed and that weird things start happening. This section explains why failure
can often be the best option but how robustness can be built in at appropriate levels
in the logic.

4.2.1 Fail fast

Imagine we are in the business of foraging for rare wild truffles and selling them to
high-end restaurants. We want to buy a dog that can help us find truffles by sniffing
them out. We have two options:

Listing 4.2 Parsing a phone number

The layer of abstraction
for phone numbers

72 CHAPTER 4 Errors
1 A dog that is trained to stop and bark as soon as it discovers a truffle. Whenever
it does this, we look where its nose is pointing, dig, and presto: we’ve found the
truffle.

2 A dog that, after finding a truffle, stays silent, walks for 10 meters or more in
random directions, and only then starts barking.

Which of these dogs should we choose? Hunting for bugs in code is a bit like hunting
for truffles with a dog; at some point the code will bark at us by exhibiting some bad
behavior or throwing an error. We’ll know where the code started barking: either
where we saw the bad behavior or a line number in a stack trace. But if the barking
doesn’t start anywhere near the actual source of the bug, then it’s not very useful.

 Failing fast is about ensuring that an error is signaled as near to the real location of
a problem as possible. For an error that can be recovered from, this gives the caller
the maximum chance of being able to recover gracefully and safely from it; for an
error that cannot be recovered from, it gives engineers the maximum chance of being
able to quickly identify and fix the problem. In both cases, it also prevents a piece of
software from ending up in an unintended and potentially dangerous state.

 A common example of this is when a function is called with an invalid argument.
Failing fast would mean throwing an error as soon as that function is called with the
invalid input, as opposed to carrying on running only to find that the invalid input
causes an issue somewhere else in the code sometime later.

 Figure 4.1 illustrates what can happen if code doesn’t fail fast: the error may only
manifest far away from the actual location of the error, and it can require significant
engineering effort to work backward through the code to find and fix the error.

Figure 4.1 If code doesn’t fail fast when an error occurs, then the error may only manifest
much later in some code far away from the actual location of the error. It can require
considerable engineering effort to track down and fix the problem.

Class A

Function 1CCaalllleerr 11
Invalid input

CCaalllleerr 2

Function 2

Invalid data

Actual location
of error

Class B

Function 3

Function 4

Invalid data
CCalllleerr 3

Invalid data

Error thrown

Location where
error manifests

An engineer has to work backward through the
code to find the actual location of the error.

73Robustness vs. failure
Figure 4.2 If code fails fast when an error occurs, then the exact location of the error will usually
be immediately obvious.

In contrast, figure 4.2 shows how failing fast can improve the situation considerably.
When failing fast, the error will manifest near to its actual location, and a stack trace
will often provide the exact line number in the code where it can be found.

 In addition to making things hard to debug, not failing fast can cause code to limp
on and potentially cause damage. An example of this might be saving some corrupted
data to a database: a bug that may only be noticed several months later, by which time
a lot of important data may have been destroyed for good.

 As with the dog and the truffle, it’s a lot more useful if code barks as near to the
real source of the problem as possible. If the error can’t be recovered from, then it’s
also important to make sure that code does indeed bark (and bark loudly) when
there’s a bug, as the next section discusses; this is known as failing loudly.

4.2.2 Fail loudly

If an error occurs that the program can’t recover from, then it’s very likely a bug
caused by a programming error or some mistake made by an engineer. We obviously
don’t want a bug like this in the software and most likely want to fix it, but we can’t fix
it unless we first know about it.

 Failing loudly is simply ensuring that errors don’t go unnoticed. The most obvious
(and violent) way to do this is to crash the program by throwing an exception (or sim-
ilar). An alternative is to log an error message, although these can sometimes get
ignored depending on how diligent engineers are at checking them and how much
other noise there is in the logs. If the code is running on a user’s device, then we
might want to send an error message back to the server to log what has happened (as
long as we have the user’s permission to do this, of course).

 If code fails fast and fails loudly, then there is a good chance that a bug will be dis-
covered during development or during testing (before the code is even released).
Even if it’s not, we’ll likely start seeing the error reports quite soon after release and
will have the benefit of knowing exactly where the bug occurred in the code from
looking at the report.

Class A

Function 1Caller 1
Invalid input

Function 2

Actual location
of error Error thrown

Location where
error manifests

Stack trace contains exact
location of error

74 CHAPTER 4 Errors
4.2.3 Scope of recoverability

The scope within which something can or cannot be recovered from can vary. For
example, if we are writing code that runs within a server that handles requests from
clients, an individual request may trigger a code path with a bug in it that causes an
error. There may be no sensible way to recover within the scope of handling that
request, but it may not warrant crashing the whole server. In this scenario, the error
cannot be recovered from within the scope of that request but can be recovered from
by the server as a whole.

 It’s generally good to try and make software robust; crashing a whole server
because of one bad request would probably not be a good idea. But it’s also important
to make sure that errors don’t go unnoticed, so the code needs to fail loudly. There is
often a dichotomy between these two aims. The loudest way to fail is to crash the pro-
gram, but this obviously makes the software less robust.

 The solution to this dichotomy is to ensure that if programming errors are caught,
they are logged and monitored in a way that ensures that engineers will notice them.
This usually involves logging detailed error information so that an engineer can
debug what happened and ensuring that error rates are monitored and engineers are
alerted if the error rate gets too high (figure 4.3 illustrates this).

Figure 4.3 In a server a programming error may occur when processing a single request.
Because requests are independent events, it might be best not to crash the whole server when
this happens. The error cannot be recovered from within the scope of a single request but can
be recovered from by server as a whole.

Server

try { ... } catch (Exception e) { ... }

Incoming request Error status returned

Request handling logic

Contains potential

programming errors

Unchecked exception thrown
for programming error Error logging

Error logged so that it

can be debugged

Monitoring and alerting

Frequency of errors

monitored. If it gets too

high then development

team is alerted.

Exceptions caught to prevent
the whole server from crashing

75Robustness vs. failure
NOTE: SERVER FRAMEWORKS Most server frameworks contain built-in func-
tionality to isolate errors for individual requests and map certain types of
errors to different error responses and handling. It’s therefore unlikely that
we’d have to write our own try–catch statement, but something conceptually
similar to this will be happening inside the server framework.

As a word of caution, this technique of catching all types of errors and then logging
them instead of signaling them to a higher level in the program should be applied
with extreme care. There are often only a handful of places (if any) in a program
where it’s appropriate to do this, such as very high-level entry points into the code or
branches of logic that are genuinely independent of, or noncritical to, the correct
functioning of the rest of the program. As we’ll see in the next section, catching and
logging errors (instead of signaling them) can result in them being hidden, which can
cause problems.

4.2.4 Don’t hide errors

As we just saw, robustness can be built in by isolating independent or noncritical parts
of code to ensure they don’t crash the entire piece of software. This usually needs to
be done carefully, sparingly, and in reasonably high-level code. Catching errors from
non-independent, critical, or low-level parts of code and then carrying on regardless
can often lead to software that doesn’t properly do what it’s meant to. And if errors
are not appropriately logged or reported, then problems might go unnoticed by the
engineering team.

 Sometimes it can seem tempting to just hide an error and pretend it never hap-
pened. This can make the code look a lot simpler and avoid a load of clunky error
handling, but it’s almost never a good idea. Hiding errors is problematic for both
errors that can be recovered from and errors that cannot be recovered from:

 Hiding an error that a caller might want to recover from denies that caller the
opportunity to gracefully recover from it. Instead of being able to display a pre-
cise and meaningful error message, or fall back to some other behavior, they
are instead completely unaware that anything has gone wrong, meaning the
software will likely not do what it is meant to.

 Hiding an error that can’t be recovered from likely conceals a programming
error. As was established in the earlier subsections about failing fast and failing
loudly, these are errors that the development team really needs to know about
so they can be fixed. Hiding them means that the development team may never
know about them, and the software will contain bugs that may go unnoticed for
quite some time.

 In both scenarios, if an error occurs it generally means that the code is not able
to do the thing that a caller was expecting it to do. If the code tries to hide the
error, then the caller will assume that everything worked fine, when in fact it
didn’t. The code will likely limp on but then output incorrect information, cor-
rupt some data, or eventually crash.

76 CHAPTER 4 Errors
The next few subsections cover some of the ways in which code can hide the fact that
an error has occurred. Some of these techniques are useful in other scenarios, but
when it comes to handling errors, they are all generally a bad idea.

RETURNING A DEFAULT VALUE

When an error occurs and a function is unable to return a desired value it can some-
times seem simpler and easier to just return a default value. The alternative of adding
code to do proper error signaling and handling can seem like a lot of effort in com-
parison. The problem with default values is they hide the fact that an error has
occurred, meaning callers of the code will likely carry on as though everything is fine.

 Listing 4.3 contains some code to look up the balance of a customer’s account. If
an error occurs while accessing the account store, then the function returns a default
value of zero. Returning a default value of zero hides the fact that an error has
occurred and makes it indistinguishable from the scenario of the customer genuinely
having a balance of zero. If a customer with a credit balance of $10,000 logged in one
day to find their balance displayed as zero, they would probably freak out. It would be
better to signal the error to the caller, so they can instead display an error message to
the user saying, “Sorry we can’t access this information right now.”

class AccountManager {
 private final AccountStore accountStore;
 ...

 Double getAccountBalanceUsd(Int customerId) {
 AccountResult result = accountStore.lookup(customerId);
 if (!result.success()) {
 return 0.0;
 }
 return result.getAccount().getBalanceUsd();
 }
}

There can be scenarios where having default values in code can be useful, but they’re
almost never appropriate when it comes to dealing with errors. They break the princi-
ples of failing fast and failing loudly because they cause the system to limp on with
incorrect data, and mean that the error will manifest in some weird way later on.

THE NULL OBJECT PATTERN

A null object is conceptually similar to a default value but expands the idea to cover
more complicated objects (like classes). A null object will look like a genuine return
value, but all its member functions will either do nothing or return a default value
that’s intended to be innocuous.

 Examples of the null object pattern can vary from something as simple as return-
ing an empty list to something as complicated as implementing a whole class. Here we
will just concentrate on the example of an empty list.

Listing 4.3 Returning a default value

A default value of zero is
returned if an error occurs.

77Robustness vs. failure
 Listing 4.4 contains a function to look up all the unpaid invoices for a customer. If
the query to the InvoiceStore fails, then the function returns an empty list. This
could easily lead to bugs in the software. A customer may owe thousands of dollars in
unpaid invoices, but if the InvoiceStore happens to be down on the day an audit is
run, then the error will lead the caller to believe that the customer has no unpaid
invoices.

class InvoiceManager {
 private final InvoiceStore invoiceStore;
 ...

 List<Invoice> getUnpaidInvoices(Int customerId) {
 InvoiceResult result = invoiceStore.query(customerId);
 if (!result.success()) {
 return [];
 }
 return result
 .getInvoices()
 .filter(invoice -> !invoice.isPaid());
 }
}

The null object pattern is covered in more detail in chapter 6. As far as design pat-
terns go, it’s a bit of a double-edged sword; there are a few scenarios where it can be
quite useful, but as the preceding example shows, when it comes to error handling,
it’s often not a good idea to use it.

DOING NOTHING

If the code in question does something (rather than returning something), then one
option is to just not signal that an error has happened. This is generally bad, as callers
will assume that the task the code was meant to perform has been completed. This is
very likely to create a mismatch between an engineer’s mental model of what the code
does and what it does in reality. This can cause surprises and create bugs in the software.

 Listing 4.5 contains some code to add an item to a MutableInvoice. If the item
being added has a price in a different currency to that of the MutableInvoice, then
that is an error, and the item will not be added to the invoice. The code does nothing
to signal that this error has occurred and that the item has not been added. This is
very likely to cause bugs in the software, as anyone calling the addItem() function
would expect that the item has been added to the invoice.

class MutableInvoice {
 ...
 void addItem(InvoiceItem item) {
 if (item.getPrice().getCurrency() !=

Listing 4.4 Returning an empty list

Listing 4.5 Do nothing when an error occurs

An empty list is returned
if an error occurs.

78 CHAPTER 4 Errors
 this.getCurrency()) {
 return;
 }
 this.items.add(item);
 }
 ...
}

The previous scenario is an example of not signaling an error. Another scenario that
we may come across is code that actively suppresses an error that another piece of
code signals. Listing 4.6 shows what this might look like. A call to emailService
.sendPlainText() can result in an EmailException if an error occurs in sending
an email. If this exception occurs then the code suppresses it and doesn’t signal any-
thing to the caller to indicate that the action failed. This is very likely to cause bugs in
the software, as a caller to this function will assume that the email has been sent, when
in fact it may not have been.

class InvoiceSender {
 private final EmailService emailService;
 ...

 void emailInvoice(String emailAddress, Invoice invoice) {
 try {
 emailService.sendPlainText(
 emailAddress,
 InvoiceFormat.plainText(invoice));
 } catch (EmailException e) { }
 }
}

A slight improvement on this would be if an error were logged when the failure hap-
pens (listing 4.7), but this is still almost as bad as the original code in listing 4.6. It’s a
slight improvement because at least an engineer might notice these errors if they
looked in the logs. But it’s still hiding the error from the caller, meaning they will
assume that the email has been sent, when in fact it has not.

class InvoiceSender {
 private final EmailService emailService;
 ...

 void emailInvoice(String emailAddress, Invoice invoice) {
 try {
 emailService.sendPlainText(
 emailAddress,
 InvoiceFormat.plainText(invoice));
 } catch (EmailException e) {

Listing 4.6 Suppressing an exception

Listing 4.7 Catching an exception and logging an error

If there is a mismatch in
currencies, the function returns.

The EmailException is caught
and then completely ignored.

79Ways of signaling errors
 logger.logError(e);
 }
 }
}

NOTE: BE CAREFUL ABOUT WHAT IS LOGGED Another thing that should make us
nervous about the code in listing 4.7 is that the EmailException might con-
tain an email address that could contain a user’s personal information and be
subject to specific data handling policies. Logging that email address to an
error log might break those data handling policies.

As the examples demonstrate, hiding errors is almost never a good idea. If a company
had the code from the previous few listings in their codebase they’d likely have a lot of
unpaid invoices and an unhealthy looking balance sheet. Hiding errors can have real-
world (and sometimes severe) consequences. It’s better to signal when an error has
occurred, and the next section covers how to do this.

4.3 Ways of signaling errors
When an error does occur, it’s generally necessary to signal this to some higher level
in the program. If it’s not possible to recover from the error, then this generally means
causing some much higher level in the program to abort and log the error, or maybe
even terminate execution of the whole program. If it is potentially possible to recover
from the error, this generally means signaling it to the immediate caller (or maybe a
caller one or two levels up the call chain) so that they can handle it gracefully.

 There are a number of ways of doing this, and the options we have for doing it will
depend on what error handling features the language we are using supports. Broadly
speaking, the ways of signaling an error fall into two categories:

 Explicit—The immediate caller of our code is forced to be aware that the error
might happen. Whether they then handle it, pass it on to the next caller, or just
ignore it is up to them. But whatever they do, it will be an active choice, and
there’s almost no way they could be oblivious to it: the possibility of the error
occurring is in the unmistakable part of our code’s contract.

 Implicit—The error gets signaled, but callers of our code are free to be oblivious
to it. For a caller to know that the error might happen often requires active
effort, like reading the documentation or the code. If the error is mentioned in
documentation, then it’s part of the small print of the code contract. Some-
times the error will not even be mentioned here, in which case it’s not part of
the written contract at all.

To emphasize, in this categorization we are referring to whether the possibility of an
error occurring is explicit or implicit from the perspective of an engineer using a
piece of code. This is not about whether the error causes stuff to ultimately fail loudly
or fail quietly, it’s about ensuring that callers are aware of scenarios they need to
be aware of (by using explicit techniques) and that they are not burdened with having

The EmailException
is logged.

80 CHAPTER 4 Errors
to handle scenarios that they can’t do anything sensible for (by using implicit tech-
niques). Table 4.1 lists some examples of explicit and implicit error-signaling
techniques.

The following subsections will explore some of the techniques listed in table 4.1, with
examples of how to use them and explanations of why they are explicit or implicit
techniques.

4.3.1 Recap: Exceptions

Many programming languages have the concept of exceptions. These are designed as a
way for a piece of code to signal an error or exceptional circumstance. When an
exception is thrown, it unwinds the call stack, either until a caller that handles the
exception is encountered or else until the call stack is fully unwound, at which point
the program will terminate and output an error message.

 An implementation of an exception is generally a fully fledged class. Languages
usually have some off-the-shelf ones that we can use, but we are also free to define our
own and encapsulate information about an error inside them.

 Java has the concept of both checked exceptions and unchecked exceptions. Most main-
stream languages that support exceptions only have the concept of unchecked excep-
tions, so when talking about almost any language other than Java, the word exception
usually implies unchecked exception.

4.3.2 Explicit: Checked exceptions

With a checked exception, the compiler forces the caller to acknowledge that it can
happen by either writing code to handle it or else declaring that the exception can be
thrown in their own function signature. Using checked exceptions is therefore an
explicit way of signaling an error.

Table 4.1 Explicit and implicit error-signaling techniques

Explicit error-signaling techniques Implicit error-signaling techniques

Location in code’s
contract

Unmistakable part Small print if documented, otherwise
not even in the small print

Caller aware that
error can happen?

Yes Maybe

Example techniques

Checked exception
Nullable return type (if null safety)
Optional return type
Result return type
Outcome return type (if return value
checking enforced)
Swift errors

Unchecked exception
Returning a magic value (should be
avoided)
Promise or future
Assertion
Check (depending on implementation)
Panic

81Ways of signaling errors
SIGNALING USING A CHECKED EXCEPTION

To demonstrate and contrast different error-signaling techniques, we’ll use the exam-
ple of a function that calculates the square root of a number. Whenever the function
is provided with a negative number as an input, this constitutes an error that needs to
be signaled somehow. Obviously most languages already have an inbuilt way of calcu-
lating a square root, so we probably wouldn’t write our own function to do this in real
life, but it’s a nice, simple example for our purposes here.

 Listing 4.8 shows what this function might look like if it throws a checked excep-
tion called NegativeNumberException when it’s supplied with a negative number.
In Java, extending the class Exception makes an exception be a checked one (this
Java paradigm is shown in listing 4.8). As well as signaling the error, Negative-
NumberException also encapsulates the erroneous value that caused the error to
help with debugging. The getSquareRoot() function signature contains throws
NegativeNumberException to indicate that it can throw this checked exception;
the code wouldn’t compile if this were omitted.

class NegativeNumberException extends Exception {
 private final Double erroneousNumber;

 NegativeNumberException(Double erroneousNumber) {
 this.erroneousNumber = erroneousNumber;
 }

 Double getErroneousNumber() {
 return erroneousNumber;
 }
}

Double getSquareRoot(Double value)
 throws NegativeNumberException {
 if (value < 0.0) {
 throw new NegativeNumberException(value);
 }
 return Math.sqrt(value);
}

HANDLING A CHECKED EXCEPTION

Any other function calling the getSquareRoot() function must either catch the
NegativeNumberException or else mark that it can be thrown in its own function
signature.

 Listing 4.9 shows a function that calls getSquareRoot() with a value and displays
the result in the UI. The function catches the NegativeNumberException if it is
thrown and displays an error message that explains what number caused the error.

Listing 4.8 Throwing a checked exception

A class to represent
a specific type of
checked exception

Encapsulates extra
information: the number
that caused the error

Functions must declare which
checked exceptions they can throw.

A checked exception is
thrown if there’s an error.

82 CHAPTER 4 Errors

in
t()

void displaySquareRoot() {
 Double value = ui.getInputNumber();
 try {
 ui.setOutput("Square root is: " + getSquareRoot(value));
 } catch (NegativeNumberException e) {
 ui.setError("Can't get square root of negative number: " +
 e.getErroneousNumber());
 }
}

If the displaySquareRoot() function doesn’t catch the NegativeNumber-
Exception, then it has to declare that the exception can be thrown in its own function
signature (the following listing shows this). This then moves the decision about how to
handle the error to whatever code called the displaySquareRoot() function.

void displaySquareRoot() throws NegativeNumberException {
 Double value = ui.getInputNumber();
 ui.setOutput("Square root is: " + getSquareRoot(value));
}

If the displaySquareRoot() function neither caught the NegativeNumber-
Exception nor declared it in its own function signature, then the code would not
compile. This is what makes a checked exception an explicit way of signaling an error
because the caller is forced to acknowledge it in some form.

4.3.3 Implicit: Unchecked exceptions

With unchecked exceptions, other engineers are free to be completely oblivious to the
fact a piece of code might throw one. It’s often advisable to document what unchecked
exceptions a function might throw, but engineers very often forget to do this. Even if
they do, this only makes the exception part of the small print in the code contract. As
we saw earlier, small print is often not a reliable way to convey a piece of code’s contract.
Unchecked exceptions are therefore an implicit way of signaling an error because
there’s no guarantee that the caller will be aware that the error can happen.

SIGNALING USING AN UNCHECKED EXCEPTION

Listing 4.11 shows the getSquareRoot() function and NegativeNumber-

Exception from the previous subsection, but with it modified so that Negative-
NumberException is now an unchecked exception. As previously mentioned, in
most languages all exceptions are unchecked exceptions, but in Java extending the
class RuntimeException makes an exception unchecked (this Java paradigm is
shown in listing 4.11). The getSquareRoot() function now does not need to declare
that it can throw an exception. The NegativeNumberException is mentioned in the
functions documentation as this is advisable but not enforced.

Listing 4.9 Catching a checked exception

Listing 4.10 Not catching a checked exception

NegativeNumberException is caught
if it’s thrown by getSquareRoot().

Error information from
the exception is displayed

The NegativeNumber-
Exception is declared
the displaySquareRoo
function signature.

83Ways of signaling errors

class NegativeNumberException extends RuntimeException {
 private final Double erroneousNumber;

 NegativeNumberException(Double erroneousNumber) {
 this.erroneousNumber = erroneousNumber;
 }

 Double getErroneousNumber() {
 return erroneousNumber;
 }
}

/**
 * @throws NegativeNumberException if the value is negative
 */
Double getSquareRoot(Double value) {
 if (value < 0.0) {
 throw new NegativeNumberException(value);
 }
 return Math.sqrt(value);
}

HANDLING AN UNCHECKED EXCEPTION

Another function calling the getSquareRoot() function can choose to catch the
NegativeNumberException in exactly the same way as the previous example when
it was a checked exception (repeated in the following listing).

void displaySquareRoot() {
 Double value = ui.getInputNumber();
 try {
 ui.setOutput("Square root is: " + getSquareRoot(value));
 } catch (NegativeNumberException e) {
 ui.setError("Can't get square root of negative number: " +
 e.getErroneousNumber());
 }
}

Importantly, a function calling getSquareRoot() is not required to acknowledge the
exception. If it didn’t catch the exception, then there is no requirement that it
declares it in its own function signature, or even in its own documentation. Listing 4.13
shows a version of the displaySquareRoot() function that neither handles nor
declares the NegativeNumberException. Because NegativeNumberException is
an unchecked exception this would compile absolutely fine. If a NegativeNumber-
Exception were thrown by getSquareRoot(), it would either bubble up to a caller
that does catch it, or else the program would terminate.

Listing 4.11 Throwing an unchecked exception

Listing 4.12 Catching an unchecked exception

A class to represent a
specific type of
unchecked exception

It’s advisable (but not enforced) that
functions document what unchecked

exceptions they can throw.

An unchecked exception is
thrown if there’s an error.

NegativeNumberException is caught
if it’s thrown by getSquareRoot().

84 CHAPTER 4 Errors

void displaySquareRoot() {
 Double value = ui.getInputNumber();
 ui.setOutput("Square root is: " + getSquareRoot(value));
}

As we can see, a caller of a function that throws an unchecked exception is free to be
completely oblivious to the fact that the exception might be thrown. This makes
unchecked exceptions an implicit way of signaling an error.

4.3.4 Explicit: Nullable return type

Returning a null from a function can be an effective, simple way to indicate that a cer-
tain value could not be calculated (or acquired). If the language we are using sup-
ports null safety, then the caller will be forced to be aware that the value might be null
and handle it accordingly. Using a nullable return type (when we have null safety) is
therefore an explicit way of signaling an error.

 If we’re using a language that doesn’t support null safety, then using an optional
return type can be a good alternative. This was discussed in chapter 2, and more infor-
mation about optionals is also available in appendix B at the end of the book.

SIGNALING USING A NULL

Listing 4.14 shows the getSquareRoot() function, but this time modified so that it
returns null if the input value is negative. One issue with returning null is that it gives
no information about why the error occurred, so it can often be necessary to add a
comment or documentation to explain what null signifies.

// Returns null if the supplied value is negative
Double? getSquareRoot(Double value) {
 if (value < 0.0) {
 return null;
 }
 return Math.sqrt(value);
}

HANDLING A NULL

Because the language supports null safety, a caller is forced to check whether the
value returned by getSquareRoot() is null before they can use it. The following list-
ing shows the displaySquareRoot() function but this time handling a nullable
return type.

void displaySquareRoot() {
 Double? squareRoot = getSquareRoot(ui.getInputNumber());

Listing 4.13 Not catching an unchecked exception

Listing 4.14 Returning a null

Listing 4.15 Handling a null

A comment is required
to explain when a null
might be returned.

The ? in Double? indicates that
the return value can be null.

null is returned if
an error occurs.

85Ways of signaling errors

 if (squareRoot == null) {
 ui.setError("Can't get square root of a negative number");
 } else {
 ui.setOutput("Square root is: " + squareRoot);
 }
}

It’s not entirely true to say that a caller is forced to check whether the value is null.
They could always just cast the value to non-null, but this is still an active decision and
in doing so they’ve had to acknowledge that the value could be null.

4.3.5 Explicit: Result return type

One of the problems with returning a null or an optional return type is that we can’t
convey any error information. In addition to informing a caller that a value couldn’t
be acquired, it may also be useful to tell them why it couldn’t be acquired. If this is the
case, then using a result type might be appropriate.

 Languages like Swift, Rust, and F# have built-in support for this and provide some
nice syntax to make them easy to use. We can make our own result type in any lan-
guage, but without the built-in syntax, using them can be a little clunkier.

 Listing 4.16 provides a basic example of how we might define our own result type
in a language that doesn’t have built-in support for it.

class Result<V, E> {
 private final Optional<V> value;
 private final Optional<E> error;

 private Result(Optional<V> value, Optional<E> error) {
 this.value = value;
 this.error = error;
 }

 static Result<V, E> ofValue(V value) {
 return new Result(Optional.of(value), Optional.empty());
 }

 static Result<V, E> ofError(E error) {
 return new Result(Optional.empty(), Optional.of(error));
 }

 Boolean hasError() {
 return error.isPresent();
 }

 V getValue() {
 return value.get();
 }

 E getError() {
 return error.get();
 }
}

Listing 4.16 A simple result type

The return value of
getSquareRoot() needs
to be checked for null.

Generic/template types used so
that the class can be used with
any types of value and error

Private constructor
to force callers to
use one of the static
factory functions

Static factory
functions, meaning
that the class can
only be instantiated
with either a value or
an error but not both

86 CHAPTER 4 Errors
If we define our own result type (because the language doesn’t have it built in), then it
relies on other engineers being familiar with how to use it. If another engineer
doesn’t know to check the hasError() function before calling getValue(), then it
defeats the point, although a diligent engineer would likely be able to figure this out
quite quickly, even if they’d never encountered a result type before.

 Assuming that the language supports the result type, or that other engineers are
familiar with it (if we define our own), then using it as a return type makes it clear that
an error might occur. Using a result return type is therefore an explicit way of signal-
ing an error.

SIGNALING USING A RESULT

Listing 4.17 shows the getSquareRoot() function, but this time with it modified to
return a result type. NegativeNumberError is a custom error, and the return type of
getSquareRoot() signifies that this error can potentially occur. NegativeNumber-
Error encapsulates extra information about the error: the erroneous number that
caused it.

class NegativeNumberError extends Error {
 private final Double erroneousNumber;

 NegativeNumberError(Double erroneousNumber) {
 this.erroneousNumber = erroneousNumber;
 }

 Double getErroneousNumber() {
 return erroneousNumber;
 }
}

Result<Double, NegativeNumberError> getSquareRoot(Double value) {
 if (value < 0.0) {
 return Result.ofError(new NegativeNumberError(value));
 }
 return Result.ofValue(Math.sqrt(value));
}

Result type implementations
Real implementations of result types will often be more sophisticated than the exam-
ple in listing 4.16. They’ll often make better use of language constructs such as
enums and provide helper functions for transforming results.

The Rust and Swift implementations of Result can be a good source of inspiration:

https://doc.rust-lang.org/beta/core/result/enum.Result.html
https://developer.apple.com/documentation/swift/result

Listing 4.17 Returning a result type

A class to represent a
specific type of error

Encapsulates extra information:
the number that caused the error

Return type signifies that
a NegativeNumberError

can happen.

An error result is
returned if an
error occurs.The answer

is wrapped
in a result.

https://doc.rust-lang.org/beta/core/result/enum.Result.html
https://developer.apple.com/documentation/swift/resul

87Ways of signaling errors
HANDLING A RESULT

It will be obvious to an engineer calling getSquareRoot() that the return type is
Result. Assuming that they are familiar with the usage of Result, they will know that
hasError() must first be called to check if an error occurred, and if one didn’t
occur, then getValue() can be called to access the value. If an error has occurred,
then the details can be accessed by calling getError() on the result. The following
listing shows this.

void displaySquareRoot() {
 Result<Double, NegativeNumberError> squareRoot =
 getSquareRoot(ui.getInputNumber());
 if (squareRoot.hasError()) {
 ui.setError("Can't get square root of a negative number: " +
 squareRoot.getError().getErroneousNumber());
 } else {
 ui.setOutput("Square root is: " + squareRoot.getValue());
 }
}

4.3.6 Explicit: Outcome return type

Some functions just do something rather than acquiring a value and returning it. If an
error can occur while doing that thing and it would be useful to signal that to the
caller, then one approach is to modify the function to return a value indicating the
outcome of the operation. As we’ll see in a moment, returning an outcome return
type is an explicit way of signaling an error as long as we can enforce that callers check
the return value.

SIGNALING USING AN OUTCOME

Listing 4.19 shows some code to send a message on a channel. The message can be sent
only if the channel is open. If the channel is not open then that is an error. The send-
Message() function signals if an error has occurred by returning a Boolean. If the mes-
sage is sent, then the function returns true. If an error occurs, it returns false.

Boolean sendMessage(Channel channel, String message) {
 if (channel.isOpen()) {
 channel.send(message);

Listing 4.18 Returning a result type

Nicer syntax
Languages with built-in support for result types will sometimes have more succinct
syntaxes for handling them than that shown in listing 4.18. There are also numerous
helper functions we could add to a custom implementation of a result type to create
nicer control flow, such as things like the and_then() function in the Rust imple-
mentation: http://mng.bz/Jv5P

Listing 4.19 Returning an outcome

The squareRoot result has
to be checked for an error.

Detailed error
information
displayed to user

The function
returns a Boolean.

http://mng.bz/Jv5P

88 CHAPTER 4 Errors
 return true;
 }
 return false;
}

If we have a more complicated scenario, then we might find it more appropriate to
use a more sophisticated outcome type than a simple Boolean. An enum is useful if
there are more than two possible outcome states or if it’s not obvious from the context
what true and false mean. If we require more detailed information, then defining an
entire class to encapsulate this can be another good option.

HANDLING AN OUTCOME

In the example of using a Boolean as a return type, handling the outcome is quite
straightforward. The function call can just be placed in an if-else statement and the
appropriate handling logic placed in each branch. The following listing shows code to
send the message “hello” on a channel and display a message in the UI to indicate if
the message was sent.

void sayHello(Channel channel) {
 if (sendMessage(channel, "hello")) {
 ui.setOutput("Hello sent");
 } else {
 ui.setError("Unable to send hello");
 }
}

ENSURING AN OUTCOME IS NOT IGNORED

One of the problems with an outcome return type is that it’s quite easy for a caller to
ignore the return value or not even be aware that the function returns a value. This
can limit how explicit an outcome return type is as a way of signaling an error. To
demonstrate this, a caller could write the code in the following listing. The code com-
pletely ignores the outcome return value from sendMessage() and in doing so tells
the user that the message has been sent when, in fact, it might not have been.

void sayHello(Channel channel) {
 sendMessage(channel, "hello");
 ui.setOutput("Hello sent");
}

In some languages there is a way to mark a function such that a compiler warning is
generated if a caller ignores the return value of the function. The name and usage of
these vary from language to language, but some examples are as follows:

 CheckReturnValue annotation in Java (from the javax.annotation package)

Listing 4.20 Handling an outcome

Listing 4.21 Ignoring an outcome

true is returned if the
message was sent.

false is returned if
an error occurred.

Success scenario
handled

Failure scenario
handled

The outcome return
value is ignored.

89Ways of signaling errors
 MustUseReturnValue annotation that can be used in C# (from https://
www.jetbrains.com/help/resharper)

 [[nodiscard]] attribute in C++

If the sendMessage() function had been marked with one of these, then the code in
listing 4.21 would produce a compiler warning that would likely be noticed by the
engineer writing the code. The following listing shows what the sendMessage()
function would look like if it were marked with an @CheckReturnValue annotation.

@CheckReturnValue
Boolean sendMessage(Channel channel, String message) {
 ...
}

The author of the code in listing 4.21 would likely notice the compiler warning and
modify their code to the version we saw earlier that handled it (repeated in the follow-
ing listing).

void sayHello(Channel channel) {
 if (sendMessage(channel, "hello")) {
 ui.setOutput("Hello sent");
 } else {
 ui.setError("Unable to send hello");
 }
}

4.3.7 Implicit: Promise or future

When writing code that executes asynchronously, it’s common to create a function
that returns a promise or a future (or an equivalent concept). In many languages (but
not all), a promise or a future can also convey an error state.

 A consumer of the promise or future is typically not forced to handle an error that
may have occurred, and they would not know that they need to add error handling
unless they were familiar with the small print in the code contract for the function in
question. This therefore makes error signaling using a promise or a future an implicit
technique.

Listing 4.22 Using a CheckReturnValue annotation

Listing 4.23 Forced to check a return value

Asynchronous?
If a process is synchronous, then it means that tasks are performed one at a time: a
task can’t begin until the previous task has completely finished. If we are making a
cake, then we can’t bake the cake in the oven until we’ve first mixed the cake batter.

Indicates that the return
value of the function should
not be ignored by callers

Success scenario
handled

Failure scenario
handled

https://www.jetbrains.com/help/resharper
https://www.jetbrains.com/help/resharper

90 CHAPTER 4 Errors
SIGNALING USING A PROMISE

Listing 4.24 shows the getSquareRoot() function, but this time modified to be an
asynchronous function that returns a promise and waits for one second before run-
ning. (You’ll have to use your imagination as to why someone would actually write this
particular code.) If an error is thrown inside the function, then the promise will
become rejected; otherwise the promise will be fulfilled with the returned value.

class NegativeNumberError extends Error {
 ...
}

Promise<Double> getSquareRoot(Double value) async {
 await Timer.wait(Duration.ofSeconds(1));
 if (value < 0.0) {
 throw new NegativeNumberError(value);
 }
 return Math.sqrt(value);
}

HANDLING A PROMISE

Listing 4.25 shows the displaySquareRoot() function modified to call the asyn-
chronous version of getSquareRoot(). The promise returned by getSquare-
Root() has two member functions that can be used to set callbacks. The then()
function can be used to set a callback function that is called if and when the promise

(continued)

This is an example of a synchronous process: the act of baking the cake is blocked
by the need to first mix the cake.

If a process is asynchronous, then it means we can perform different tasks while wait-
ing for other tasks to finish. While our cake is baking in the oven, we might use the
otherwise wasted time to make the frosting for the cake. This is an example of an
asynchronous process: we can make the frosting without having to wait for the cake
to be baked.

When code has to wait for something to happen (like a server returning a response),
it’s common to write it in an asynchronous way. This means the code can do other
things while waiting for the server.

Most programming languages provide ways of executing code asynchronously.
Exactly how to do this can vary a lot between different languages, so it’s worth looking
it up for whatever language you use. The use of an asynchronous function and prom-
ise in the following code examples most closely resembles the JavaScript paradigm.
If you’re not familiar with this and would like to find out more, the following reference
page provides a good overview with examples: http://mng.bz/w0wW

Listing 4.24 An asynchronous function

A class to represent a
specific type of error

async marks the function
as being asynchronous.

Waits one second
before actually running

An error thrown inside the
function will cause the
promise to be rejected.

A returned value
causes the promise
to be fulfilled.

http://mng.bz/w0wW

91Ways of signaling errors
is fulfilled, and the catch() function can be used to set a callback that is called if and
when the promise is rejected.

void displaySquareRoot() {
 getSquareRoot(ui.getInputNumber())
 .then(squareRoot ->
 ui.setOutput("Square root is: " + squareRoot))
 .catch(error ->
 ui.setError("An error occurred: " + error.toString()));
}

WHY PROMISES ARE AN IMPLICIT SIGNALING TECHNIQUE

To know that an error can occur and that the promise may be rejected, we need to
know either the small print or implementation details of whatever function generated
the promise. Without knowing these, a consumer of a promise can easily be unaware
of a potential error state and may only provide a callback via the then() function.
When no callback has been provided via the catch() function, the error might be
caught by some higher level error handler, or it might just go completely unnoticed
(depending on the language and set up).

 Promises and futures can be an excellent way to return values from asynchronous
functions. But because the caller is free to be completely unaware of the potential
error scenario, using a promise or future is an implicit way of signaling an error.

MAKING A PROMISE EXPLICIT

If we’re returning a promise or a future and want to use an explicit error-signaling tech-
nique, then one option is to return a promise of a result type. If we do this, then the
getSquareRoot() function would look like the following listing. This can be a useful
technique, but the code starts to get quite clunky, so it doesn’t appeal to everyone.

Promise<Result<Double, NegativeNumberError>> getSquareRoot(
 Double value) async {
 await Timer.wait(Duration.ofSeconds(1));
 if (value < 0.0) {
 return Result.ofError(new NegativeNumberError(value));
 }
 return Result.ofValue(Math.sqrt(value));
}

4.3.8 Implicit: Returning a magic value

A magic value (or an error code) is a value that fits into the normal return type of a
function, but which has a special meaning. An engineer has to either read the docu-
mentation or the code itself to be aware that a magic value might be returned. This
makes them an implicit error-signaling technique.

Listing 4.25 Consuming a promise

Listing 4.26 A promise of a result

then() callback called if and
when the promise is fulfilled

catch() callback called if and
when the promise is rejected

The return type
is quite clunky.

92 CHAPTER 4 Errors
 A common way of signaling an error using a magic value is to return minus one.
The following listing shows what this looks like for the getSquareRoot() function.

// Returns -1 if a negative value is supplied
Double getSquareRoot(Double value) {
 if (value < 0.0) {
 return -1.0;
 }
 return Math.sqrt(value);
}

Magic values can easily cause surprises and lead to bugs because they need to be han-
dled, but nothing in the unmistakably obvious part of the code contract informs call-
ers of this. The problems that magic values can cause are discussed in detail in chapter
6, so we won’t discuss them in detail here. But the important point to remember for
this chapter is that magic values are often not a good way to signal an error.

4.4 Signaling errors that can’t be recovered from
When an error occurs that there is no realistic prospect of a program recovering from,
then it is best to fail fast and to fail loudly. Some common ways of achieving this are
the following:

 Throwing an unchecked exception
 Causing the program to panic (if using a language that supports panics)
 Using a check or an assertion (as covered in chapter 3)

These will cause the program (or scope of irrecoverability) to exit, which should mean
that engineers notice something is wrong, and the error message produced will usu-
ally provide a stack trace or line number to give a clear indication of where the error
has occurred.

 Using an implicit technique (like those just mentioned) prevents the need for
every caller higher up the call chain to write code to acknowledge or handle the error
scenario. When there’s no conceivable way that an error could be recovered from, this
makes sense, because there is nothing sensible that a caller could do other than just
pass the error onto the next caller.

4.5 Signaling errors that a caller might want to recover from
This is where things get interesting because software engineers (and programming lan-
guage designers) don’t all agree on what the best practices are regarding signaling
errors that a caller might want to recover from. The debate here is generally between
using unchecked exceptions versus explicit error-signaling techniques (such as checked
exceptions, safe nulls, optional types, or result types). There are valid arguments and
counterarguments to both sides of this, and I will try to summarize them in this section.

 Before I do, it’s worth remembering that what is likely more important than any of
the following arguments is that you and your team agree on what your philosophy is.

Listing 4.27 Returning a magic value

Comment warning that the
function can return minus one

Minus one returned
if an error occurs

93Signaling errors that a caller might want to recover from
The worst possible situation is that half your team writes code that follows one practice
regarding error signaling and handling, and the other half follows a completely differ-
ent practice. You will have a nightmare of a time whenever the pieces of code have to
interact with each other.

 The following arguments, as presented, will likely sound a bit all or nothing, but
bear in mind that if you speak to another engineer, then you will probably find that
their opinions on error signaling and handling are more nuanced.

NOTE: LEAKING IMPLEMENTATION DETAILS Another thing to consider for errors
that a caller might want to recover from is that callers should ideally not have
to know implementation details of the code they’re calling in order to handle
errors it might signal. This is discussed in the context of modularity in chap-
ter 8 (sections 8.6 and 8.7).

4.5.1 Arguments for using unchecked exceptions

Some common arguments for why it’s better to use unchecked exceptions even for
errors that can potentially be recovered from are as follows.

IMPROVING CODE STRUCTURE

Some engineers argue that throwing an unchecked exception (instead of using an
explicit technique) can improve the code structure because most error handling can
be performed in a distinct place in a higher layer of the code. The errors bubble up to
this layer, and the code in between doesn’t have to be cluttered with loads of error
handling logic. Figure 4.4 demonstrates what this might look like.

Figure 4.4 Some engineers argue that using unchecked exceptions can improve code structure
because the majority of error handling can be performed in a few distinct layers.

Error handling layer

Layer 1
Remote server unreachable

Layer 2
Invalid function argument Class in invalid state

Display error message to user or log error

RetryExhausted

Exception

IllegalArgument

Exception

IllegalState

Exception

Layer 3
Retry task

RetryableException

94 CHAPTER 4 Errors
Layers in the middle can handle some of the exceptions if they want to (such as retry-
ing certain tasks), but otherwise errors will just bubble up to the topmost error han-
dling layer. If this were a user application the error handling layer might show an
overlay on the UI to display the error message; or if this were a server or backend pro-
cess, then the error message might be logged somewhere. The key advantage of this
approach is that the logic for handling errors can be kept contained in a few distinct
layers rather than being spread throughout the code.

BEING PRAGMATIC ABOUT WHAT ENGINEERS WILL DO

Some argue that with more explicit error-signaling techniques (return types and
checked exceptions) engineers eventually get fed up and do the wrong thing, for
example catching an exception and ignoring it, or casting a nullable type to non-null
without checking it.

 To demonstrate this, imagine that the code in listing 4.28 existed somewhere in
the codebase. The listing contains code to log the temperature to a data logger, which
in turn uses an InMemoryDataStore to store the logged data. Nothing in this initial
version of the code can cause an error, so no error-signaling or handling techniques
are required.

class TemperatureLogger {
 private final Thermometer thermometer;
 private final DataLogger dataLogger;
 ...

 void logCurrentTemperature() {
 dataLogger.logDataPoint(
 Instant.now(),
 thermometer.getTemperature());
 }
}

class DataLogger {
 private final InMemoryDataStore dataStore;
 ...

 void logDataPoint(Instant time, Double value) {
 dataStore.store(new DataPoint(time.toMillis(), value));
 }
}

Now imagine that an engineer has been asked to modify the DataLogger class so that
instead of just storing values to memory it now saves them to disk to ensure that
they’re persisted. The engineer swaps the InMemoryDataStore class with the Disk-
DataStore class instead. Writing to disk can fail, so an error can now occur. If an
explicit error-signaling technique is used, then the error would either need to be han-
dled or else explicitly passed on to the next caller up the chain.

Listing 4.28 Initial code with no error scenarios

95Signaling errors that a caller might want to recover from
 In this scenario, we’ll demonstrate this by DiskDataStore.store() throwing a
checked exception (IOException), but the principle is the same with any other
explicit error-signaling technique. Because IOException is a checked exception it
either needs to be handled or else put in the DataLogger.logDataPoint() func-
tion’s signature. There’s no sensible way to handle this error within the DataLogger
.logDataPoint() function, but adding it to the function signature will require mod-
ifying every call site, and potentially multiple call sites in the layers above those.
Daunted by this amount of work, the engineer decides to just hide the error instead
and writes the code in the following listing.

class DataLogger {
 private final DiskDataStore dataStore;
 ...

 void logDataPoint(Instant time, Double value) {
 try {
 dataStore.store(new DataPoint(time.toMillis(), value));
 } catch (IOException e) {}
 }
}

As was discussed earlier in this chapter, hiding errors is almost never a good idea. The
DataLogger.logDataPoint() function now doesn’t always do what it claims to do;
sometimes data points will not be saved, but the caller will not be aware of this. Using
explicit error-signaling techniques can sometimes cause a cascade of work that needs
to be done to repeatedly signal an error up through the layers of code, and this can
encourage engineers to cut corners and do the wrong things. The need to be prag-
matic about this is one of the most frequently expressed arguments in favor of using
unchecked exceptions.

4.5.2 Arguments for using explicit techniques

Some common arguments for why it’s better to use explicit error-signaling techniques
for errors that can potentially be recovered from are as follows.

GRACEFUL ERROR HANDLING

If using unchecked exceptions, then it’s difficult to have a single layer that can grace-
fully handle all errors. For example, if a user input is invalid, it probably makes sense
to have a nice error message right next to that input field. If the engineer writing the
code that processes the inputs wasn’t aware of the error scenario and left it to bubble
up to a higher level, then this might result in a less user-friendly error message such as
a generic message overlaid on the UI.

 Forcing callers to be aware of potential errors (by using a return type or a checked
exception) means that there is a greater chance that these errors will be handled
gracefully. With an implicit technique, a caller might not be aware that an error sce-
nario can happen, so how would they know to handle it?

Listing 4.29 Hiding a checked exception

The IOException error
is hidden from callers.

96 CHAPTER 4 Errors
ERRORS CAN’T BE ACCIDENTALLY IGNORED

There may be some errors that really do need to be handled by certain callers. If an
unchecked exception is used, then doing the wrong thing (not handling the error) hap-
pens by default rather than being an active decision. This is because it’s easy for an engi-
neer (and code reviewer) to be completely unaware that a certain error might happen.

 If using a more explicit error-signaling technique like a return type or a checked
exception, then yes, engineers can still do the wrong thing (like catching an excep-

The UncheckedIOException has not been
handled, but none of the new lines of code
look obviously wrong.

The IOException has not been handled
properly, but this is quite blatant in the new
lines of code and would likely be noticed
by a reviewer.

Timer.schedule() starts a new thread, so
any exceptions thrown by code it schedules
will not bubble up to layers above this one.

class TemperatureLogger {
 private final Thermometer thermometer;
 private final DataLogger dataLogger;
 ...

 void startLogging() {
 Timer.schedule(
 logCurrentTemperature,
 Duration.ofMinutes(1));
 }

 void logCurrentTemperature() {
 dataLogger.logDataPoint(
 Instant.now(),
 thermometer.getTemperature());
 }
}

class DataLogger {
 ...

 /**
 * @throws UncheckedIOException if
 * saving data point fails.
 */
 void logDataPoint(
 Instant time,
 Double value) { ... }
}

Code change when using an
unchecked exception

class TemperatureLogger {
 private final Thermometer thermometer;
 private final DataLogger dataLogger;
 ...

 void startLogging() {
 Timer.schedule(
 logCurrentTemperature,
 Duration.ofMinutes(1));
 }

 void logCurrentTemperature() {
 try {
 dataLogger.logDataPoint(
 Instant.now(),
 thermometer.getTemperature());
 } catch (IOException e) {
 logError(e);
 }
 }
}

class DataLogger {
 ...

 void logDataPoint(
 Instant time,
 Double value) throws IOException
 { ... }
}

Code change when using a
checked exception

Figure 4.5 When using explicit error-signaling techniques, not handling an error properly will often
result in a deliberate and blatant transgression in the code. By contrast, when using an unchecked
exception, it may not be obvious from the code that an error has not been handled properly.

97Signaling errors that a caller might want to recover from
tion and ignoring it), but this usually requires active effort and results in quite a bla-
tant transgression in the code. This makes it more likely that issues like this can be
weeded out in code reviews, because it will be obvious to the reviewer. With more
explicit error-signaling techniques, the wrong thing doesn’t happen by default or by
accident.

 Figure 4.5 contrasts how a code change might look to a reviewer if using an
unchecked exception versus a checked exception. The fact that something bad is hap-
pening in the code is not at all obvious when using an unchecked exception, whereas
it’s extremely obvious in the case where a checked exception is used. Other explicit
error-signaling techniques (such as an outcome return type enforced with an
@CheckReturnValue annotation) would force the engineer’s transgression to be
similarly obvious in the code change.

BEING PRAGMATIC ABOUT WHAT ENGINEERS WILL DO

Arguments around engineers doing the wrong thing because they get fed up with
error handling also apply against using unchecked exceptions. There’s no guarantee
that unchecked exceptions get properly documented throughout a codebase, and
from my personal experience, they often don’t. This means there is often no certainty
about exactly which unchecked exceptions some code might throw, and this can turn
catching them into a frustrating game of whack-a-mole.

 Listing 4.30 contains a function to check if a data file is valid. It does this by check-
ing whether any exceptions are thrown that would indicate that the file is invalid.
DataFile.parse() throws a number of different unchecked exceptions, which have
not all been documented. The author of the isDataFileValid() function has
added code to catch three of these unchecked exceptions.

Boolean isDataFileValid(byte[] fileContents) {
 try {
 DataFile.parse(fileContents);
 return true;
 } catch (InvalidEncodingException |
 ParseException |
 UnrecognizedDataKeyException e) {
 return false;
 }
}

After releasing their code, the author of the isDataFileValid() function notices
that they’re seeing a lot of crash reports. They investigate and find that the failures are
due to yet another undocumented, unchecked exception: InvalidDataRange-
Exception. At this point the author of the code might be so fed up with playing whack-
a-mole with all these unchecked exceptions that they decide to instead catch all types
of exceptions and be done with it. They write the code in the following listing.

Listing 4.30 Catching multiple types of unchecked exceptions

Can throw a number of
undocumented,
unchecked exceptions

Catches three different types
of unchecked exception

98 CHAPTER 4 Errors

Boolean isDataFileValid(byte[] fileContents) {
 try {
 DataFile.parse(fileContents);
 return true;
 } catch (Exception e) {
 return false;
 }
}

Catching every type of exception in code like this is often a bad idea. This will hide
almost every type of error, including a lot that the program cannot realistically recover
from. There might be some severe programming error that is now hidden. This could
be a bug in the DataFile.parse() function, or it could be some severe misconfigu-
ration in the software that results in something like a ClassNotFoundException.
Either way, these programming errors will now go completely unnoticed, and the soft-
ware will fail in a silent and weird way.

 A transgression like the code in listing 4.31 is quite blatant, so we’d hope that it
gets weeded out during a code review. But if we’re worried that our code-review pro-
cess is not robust enough to catch transgressions like this, then it’s worth realizing that
we likely have a problem whether we decide to use unchecked exceptions or explicit
error-signaling techniques. The real problem is that we have engineers doing sloppy
things and no robust process to weed these out.

4.5.3 My opinion: Use an explicit technique

My opinion is that it’s best to avoid using an unchecked exception for an error that a
caller might want to recover from. In my experience, the usage of unchecked excep-
tions very rarely gets documented fully throughout a codebase, meaning it can
become near impossible for an engineer using a function to have any certainty about
what error scenarios may happen and which they need to handle.

Listing 4.31 Catching all types of exceptions

Sticking to standard exception types
In order to avoid this exception whack-a-mole, an approach sometimes favored by
engineers using unchecked exceptions is to prefer using (or subclassing) standard
exception types (like ArgumentException or StateException). It’s more likely
that other engineers will predict that these might be thrown and handle them appro-
priately, and it limits the number of exception types that engineers usually need to
worry about.

A downside of this is that it can limit the ability to distinguish between different error
scenarios: one cause of a StateException might be something a caller wants to
recover from, while another cause might not be. As you’ve probably gathered by now,
the topic of error signaling and handling is an imperfect science, and there are pros
and cons to consider with any technique.

Catches every
type of exception

99Don’t ignore compiler warnings
 I have seen too many bugs and outages caused by the use of undocumented,
unchecked exceptions for errors that the caller would have liked to recover from if
only the engineer writing that code were aware of the exception, so my personal pref-
erence is to use explicit error-signaling techniques when there is a chance that a caller
might want to recover.

 As this section already discussed, this approach is not without some downsides, but
in my experience the downsides of using unchecked exceptions for these kinds of
errors are worse. As I said earlier, though, what’s potentially even worse is if you work on
a team where some engineers follow one approach and some follow another, so it’s best
that you and your team agree on a philosophy around error signaling and stick to it.

4.6 Don’t ignore compiler warnings
Chapter 3 covered some techniques for ensuring that a compiler error occurs if code
is broken or misused. In addition to compiler errors, most compilers also emit warn-
ings. A compiler warning often flags code that is suspicious in some way, and this can
be an early warning that there might be a bug. Paying attention to these warnings can
be a great way to identify and weed out programming errors long before the code gets
anywhere near the codebase.

 To demonstrate this, consider the code in listing 4.32. It’s for a class to store some
information about a user. It contains a bug because the getDisplayName() function
incorrectly returns the user’s real name, rather than their display name.

class UserInfo {
 private final String realName;
 private final String displayName;

 UserInfo(String realName, String displayName) {
 this.realName = realName;
 this.displayName = displayName;
 }

 String getRealName() {
 return realName;
 }

 String getDisplayName() {
 return realName;
 }
}

This code would compile, but the compiler would likely spit out a warning along the
lines of “WARNING: private member ‘UserInfo.displayName’ can be removed as the
value assigned to it is never read.” If we ignored this warning then we might not real-
ize that this bug exists. We could hope that testing would catch it, but if it didn’t, this
could actually be quite a serious bug that violates users’ privacy in a bad way.

Listing 4.32 Code that causes a compiler warning

The user’s real name is
erroneously returned.

100 CHAPTER 4 Errors
 Most compilers can be configured so that any warnings become errors and prevent
the code from compiling. This may seem a bit over the top and draconian, but it’s actu-
ally incredibly useful, as it forces engineers to notice warnings and act accordingly.

 If the warning is not actually anything to be concerned about, then there will usu-
ally be a mechanism in the language to suppress a specific warning (without having to
turn off all warnings). For example, if there were a valid reason for having an unused
variable in the UserInfo class, then the warning could be suppressed. The following
listing shows what this might look like.

class UserInfo {
 private final String realName;

 // displayName is unused for now, as we migrate away from
 // using real names. This is a placeholder that will be used
 // soon. See issue #7462 for details of the migration.
 @Suppress("unused")
 private final String displayName;

 UserInfo(String realName, String displayName) {
 this.realName = realName;
 this.displayName = displayName;
 }

 String getRealName() {
 return realName;
 }

 String getDisplayName() {
 return realName;
 }
}

It can be tempting to dismiss compiler warnings as not being that important; after all,
the code still compiles so it’s easy to assume that nothing is catastrophically wrong.
Although warnings are just that—warnings—they can often be a sign that there is
something wrong with the code, and in some scenarios this could be quite a serious
bug. As the previous examples show, it’s good to make sure that compiler warnings are
noticed and acted on. Ideally, there should be no warnings when our code is built
because every issue has either been fixed or explicitly suppressed with a valid explana-
tion of why.

Summary
 There are broadly two types of error:

– Those that a system can recover from
– Those that a system cannot recover from

 Often only the caller of a piece of code knows if an error generated by that
code can be recovered from.

Listing 4.33 Suppressing a compiler warning

The warning is
suppressed.

101Summary
 When an error does occur it’s good to fail fast, and if the error can’t be recov-
ered from to also fail loudly.

 Hiding an error is often not a good idea, and it’s better to signal that the error
has occurred.

 Error-signaling techniques can be divided into two categories:

– Explicit—In the unmistakable part of the code’s contract. Callers are aware
that the error can happen.

– Implicit—In the small print of the code’s contract, or potentially not in the
written contract at all. Callers are not necessarily aware that the error can
happen.

 Errors that cannot be recovered from should use implicit error-signaling tech-
niques.

 For errors that can potentially be recovered from:

– Engineers don’t all agree on whether explicit or implicit techniques should
be used.

– My opinion is that explicit techniques should be used.

 Compiler warnings can often flag that something is wrong with the code. It’s
good to pay attention to them.

102 CHAPTER 4 Errors

Part 2

In practice

Chapter 1 established the grandly named “six pillars of code quality.”
These provide some high-level strategies that can help ensure our code is of
high quality. In part 2, we delve deeper into the first five of these in a more prac-
tical way.

 Each chapter in part 2 concentrates on one of the pillars of code quality, with
each section within the chapters demonstrating a particular consideration or
technique. The general pattern is to first show a common way in which code can
be problematic and to then show how a particular technique can be used to
improve the situation. Each section within the chapters is designed to be rela-
tively self-contained, and my hope is that they can provide a useful reference for
anyone wishing to explain a particular concept or consideration to another engi-
neer (for example, during a code review).

 Please note that the list of topics within each chapter is not exhaustive. For
example, chapter 7 discusses six specific topics for making code hard to misuse.
This is not to suggest that these are the only six things we ever need to consider
in order to make our code hard to misuse. But the aim is that by understanding
the reasoning behind these six things, in combination with the more theoretical
things we learned in part 1, we’ll be able to develop a broader sense of judgment
that can guide us in whatever scenario we might find ourselves.

104 CHAPTER

Make code readable
Readability is inherently a subjective thing, and it’s therefore hard to put a solid
definition on exactly what it means. The essence of readability is ensuring that
engineers can quickly and accurately understand what some code does. Actually
achieving this often requires being empathetic and trying to imagine how things
might be confusing or open to misinterpretation when seen from someone else’s
point of view.

 This chapter should provide a solid grounding in some of the most common
and effective techniques for making code more readable. It’s worth remembering,
though, that each real-life scenario is different and has its own set of consider-
ations, so using common sense and applying good judgment are both essential.

This chapter covers
 Techniques for making code self-explanatory

 Ensuring that details within the code are clear
to others

 Using language features for the right reasons
105

106 CHAPTER 5 Make code readable
5.1 Use descriptive names
Names are needed to uniquely identify things, but they often also provide a brief sum-
mary of what the thing is. The word toaster uniquely identifies an appliance in your
kitchen, but it also gives a massive hint as to what it does: it toasts things. If we, instead,
insisted on referring to a toaster as “object A,” then it would be quite easy to forget
what exactly “object A” is and what it does.

 The same principle applies when naming things in code. Names are needed to
uniquely identify things like classes, functions, and variables. But how we name things
is also a great opportunity to make the code more readable by ensuring that things are
referred to in a self-explanatory way.

5.1.1 Nondescriptive names make code hard to read

Listing 5.1 is a somewhat extreme example of what some code might look like if no
effort whatsoever was put into using descriptive names. Spend 20–30 seconds looking
at it and see how hard it is to have any idea what it does.

class T {
 Set<String> pns = new Set();
 Int s = 0;
 ...
 Boolean f(String n) {
 return pns.contains(n);
 }

 Int getS() {
 return s;
 }
}

Int? s(List<T> ts, String n) {
 for (T t in ts) {
 if (t.f(n)) {
 return t.getS();
 }
 }
 return null;
}

If you were asked to describe what this code does, what would you say? Unless you’ve
already glanced ahead, you probably have no idea what this code does, or what con-
cepts the strings, integers, and class even represent.

5.1.2 Comments are a poor substitute for descriptive names

One way to improve this might be to add some comments and documentation. If the
author had done this, then the code might look something like listing 5.2. This makes
things a little better, but there are still a bunch of problems:

Listing 5.1 Nondescriptive names

107Use descriptive names
 The code is now a lot more cluttered, and the author and other engineers now
have to maintain all these comments and documentation as well as the code
itself.

 Engineers need to continually scroll up and down the file to make sense of
things. If an engineer is all the way at the bottom of the file looking at the
getS() function and forgets what the variable s is for, then they have to scroll
all the way to the top of the file to find the comment explaining what s is. If the
class T is several hundred lines long, then this gets annoying quite quickly.

 If an engineer is looking at the body of the function s(), it’s still a complete
mystery as to what a call like t.f(n) is doing or returning, unless they go and
look at the code for the class T.

/** Represents a team. */
class T {
 Set<String> pns = new Set(); // Names of players in the team.
 Int s = 0; // The team's score.
 …
 /**
 * @param n the players name
 * @return true if the player is in the team
 */
 Boolean f(String n) {
 return pns.contains(n);
 }

 /**
 * @return the team's score
 */
 Int getS() {
 return s;
 }
}

/**
 * @param ts a list of all teams
 * @param n the name of the player
 * @return the score of the team that the player is on
 */
Int? s(List<T> ts, String n) {
 for (T t in ts) {
 if (t.f(n)) {
 return t.getS();
 }
 }
 return null;
}

Some of the documentation in listing 5.2 might well be useful: documenting what
parameters and return types represent can help other engineers understand how to use

Listing 5.2 Comments instead of descriptive names

108 CHAPTER 5 Make code readable
the code. But comments should not be used as a substitute for giving things descriptive
names. Section 5.2 discusses the use of comments and documentation in more detail.

5.1.3 Solution: Make names descriptive

Using descriptive names can transform the impenetrable code we just saw into some-
thing that is suddenly very easy to understand. The following listing shows what the
code looks like with descriptive names.

class Team {
 Set<String> playerNames = new Set();
 Int score = 0;
 ...
 Boolean containsPlayer(String playerName) {
 return playerNames.contains(playerName);
 }

 Int getScore() {
 return score;
 }
}

Int? getTeamScoreForPlayer(List<Team> teams, String playerName) {
 for (Team team in teams) {
 if (team.containsPlayer(playerName)) {
 return team.getScore();
 }
 }
 return null;
}

The code is now much easier to understand:

 Variables, functions, and classes are now self-explanatory.
 Pieces of code now make more sense even when seen in isolation; it’s very obvious

what a call like team.containsPlayer(playerName) is doing and returning
without even having to look at the code for the Team class. Previously this function
call looked like t.f(n), so this is clearly a big improvement in readability.

The code is also less cluttered than if comments had been used, and engineers can
concentrate on maintaining the code without also having to keep a collection of com-
ments maintained alongside it.

5.2 Use comments appropriately
Comments or documentation in code can serve various purposes, such as the following:

 Explaining what some code does
 Explaining why some code does what it does
 Providing other information such as usage instructions

Listing 5.3 Descriptive names

109Use comments appropriately
This section will concentrate on the first two of these: using comments to explain what
and to explain why. Other information like usage instructions generally form part of
the code’s contract and were discussed in chapter 3.

 High-level comments summarizing what a large chunk of code (like a class) does
can often be useful. When it comes to the lower level, line-by-line details of code, how-
ever, comments explaining what code does are often not the most effective way to
make code readable.

 Well-written code with descriptive names should be self-explanatory in terms of
what it’s doing at the line-by-line level. If we need to add lots of low-level comments to
our code in order to explain what it’s doing, then this is likely a sign that our code is
not as readable as it ideally should be. Comments that explain why code exists or that
provide more context, on the other hand, can often be quite useful, as it’s not always
possible to make this clear with just the code alone.

NOTE: USE COMMON SENSE This section provides some general guidance about
how and when to use comments, but these are not hard-and-fast rules. We
should use our common sense about what makes the code easiest to under-
stand and maintain. If we have no choice but to include some gnarly bitwise
logic or we’re having to resort to some clever tricks to optimize our code, then
comments explaining what some low-level code does might well be useful.

5.2.1 Redundant comments can be harmful

The code in listing 5.4 produces an ID by joining a first name to a last name using a
period. The code uses a comment to explain what it does, but the code is already self-
explanatory, so the comment is kind of useless.

String generateId(String firstName, String lastName) {
 // Produces an ID in the form "{first name}.{last name}".
 return firstName + "." + lastName;
}

Including a redundant comment like this can actually be worse than useless because

 engineers now need to maintain this comment; if someone changes the code,
then they also need to remember to update the comment.

 it clutters the code: imagine if every line of code had an associated comment
like this. Reading 100 lines of code now turns into reading 100 lines of code
plus 100 comments. Given that this comment doesn’t add any additional infor-
mation, it just wastes engineers’ time.

It would probably be better to remove this comment and let the code do the explaining.

5.2.2 Comments are a poor substitute for readable code

The code in listing 5.5 again generates an ID by joining a first name to a last name
using a period. In this example the code is not self-explanatory because the first and

Listing 5.4 A comment explaining what code does

110 CHAPTER 5 Make code readable
last names are respectively contained within the first and second elements of an array.
The code includes a comment that explains this. In this scenario the comment seems
useful because the code is not clear on its own, but the real problem here is that the
code has not been made as readable as it could be.

String generateId(String[] data) {
 // data[0] contains the user's first name, and data[1] contains the user's
 // last name. Produces an ID in the form "{first name}.{last name}".
 return data[0] + "." + data[1];
}

Because the comment is only needed because the code itself is not very readable, a
better approach would probably be to instead make the code more readable. In this
scenario, this can easily be achieved by using some well-named helper functions. This
is shown in the following listing.

String generateId(String[] data) {
 return firstName(data) + "." + lastName(data);
}

String firstName(String[] data) {
 return data[0];
}

String lastName(String[] data) {
 return data[1];
}

Making code self-explanatory is often preferable to using comments because it reduces
the maintenance overhead and removes the chance that comments become out-of-date.

5.2.3 Comments can be great for explaining why code exists

What code is sometimes less good at self-explaining is why something is being done.
The reason that a certain piece of code exists, or the reason it does what it does, can
sometimes be linked to some context or knowledge that would not necessarily be
known by another engineer looking at the code. Comments can be very useful when
context like this is important for understanding the code or being able to modify it in
a safe way. Examples of things that it might be good to comment on to explain why
some code exists include the following:

 A product or business decision
 A fix for a weird, nonobvious bug
 Dealing with a counterintuitive quirk in a dependency

Listing 5.5 Unreadable code explained with a comment

Listing 5.6 More readable code

111Use comments appropriately
Listing 5.7 contains a function to get the ID of a user. There are two different ways of
generating an ID depending on when the user signed up. The reason for this would
not be obvious from the code alone, so comments are used to explain it. This prevents
the code being confusing to other engineers and ensures they know what consider-
ations apply if they need to modify this code.

class User {
 private final Int username;
 private final String firstName;
 private final String lastName;
 private final Version signupVersion;
 ...

 String getUserId() {
 if (signupVersion.isOlderThan("2.0")) {
 // Legacy users (who signed up before v2.0) were assigned
 // IDs based on their name. See issue #4218 for more
 // details.
 return firstName.toLowerCase() + "." +
 lastName.toLowerCase();
 }
 // Newer users (who signed up from v2.0 onwards) are assigned
 // IDs based on their username.
 return username;
 }
 ...
}

This does clutter the code slightly, but the benefit outweighs this cost. The code alone,
without the comments, could otherwise cause confusion.

5.2.4 Comments can provide useful high-level summaries

We can think of comments and documentation that explain what code does as a bit
like a synopsis when reading a book:

 If you pick up a book and every single paragraph on every single page is pre-
ceded by a one-sentence synopsis it would be quite an annoying and difficult
book to read. This is like low-level comments explaining what code does; it
harms readability.

 On the other hand, a synopsis on the back cover of a book (or even at the start
of each chapter) that briefly summarizes what the content is about can be
incredibly useful. It allows you to quickly gauge whether the book (or chapter)
is useful or interesting to you. This is like high-level comments summarizing
what a class does. It makes it very easy for an engineer to gauge whether the
class is useful to them or what things it might affect.

Listing 5.7 Comment to explain why code exists

Comments
explaining
why some
code exists

112 CHAPTER 5 Make code readable
Some examples where high-level documentation of what code does might be useful
are as follows:

 Documentation explaining, at a high level, what a class does and any important
details that other engineers should be made aware of

 Documentation explaining what an input parameter to a function is or what it
does

 Documentation explaining what a return value from a function represents

It’s useful to remember what was said in chapter 3: Documentation is important, but
we should be realistic to the fact that engineers often don’t read it. It’s best not to rely
too heavily on it to avoid surprises or prevent our code from being misused (chapters
6 and 7 will respectively cover more robust techniques for this).

 Listing 5.8 shows how documentation might be used to summarize what the User
class as a whole does. It provides some useful high-level details such as the fact that it
relates to a user of the “streaming service” and that it can potentially be out of sync
with the database.

/**
 * Encapsulates details of a user of the streaming service.
 *
 * This does not access the database directly and is, instead,
 * constructed with values stored in memory. It may, therefore,
 * be out of sync with any changes made in the database after
 * the class is constructed.
 */
class User {
 ...
}

Comments and documentation are useful for filling in details that the code alone can-
not convey or for summarizing what a larger chunk of code does. The downsides are
that they need to be maintained, they can easily become out-of-date, and they can clut-
ter the code. Using them effectively is a balancing act between these pros and cons.

5.3 Don’t fixate on number of lines of code
In general, the fewer lines of code in a codebase, the better. Code generally requires
some amount of ongoing maintenance, and more lines of code can sometimes be a
sign that code is overly complex or not reusing existing solutions. More lines of code
can also increase cognitive load on engineers because there are obviously more of
them to read.

 Engineers sometimes take this to an extreme and argue that minimizing the number
of lines of code is more important than any other factors regarding code quality. A
complaint that is sometimes made is that a so-called code-quality improvement has
turned 3 lines of code into 10 lines of code and that it’s, therefore, made the code worse.

Listing 5.8 High-level class documentation

113Don’t fixate on number of lines of code
 It’s important to remember, however, that number of lines of code is a proxy mea-
surement for the things we actually care about and, as with most proxy measurements,
it’s a useful guiding principle but not a hard-and-fast rule. The things we actually care
about are ensuring that code is

 easy to understand,
 hard to misunderstand, and
 hard to accidentally break.

Not all lines of code are equal: one extremely hard-to-understand line of code can eas-
ily reduce code quality compared to having 10 (or even 20) easy-to-understand lines
of code in its place. The next two subsections demonstrate this with an example.

5.3.1 Avoid succinct but unreadable code

To demonstrate how fewer lines of code can be less readable, consider listing 5.9. It
shows a function to check if a 16-bit ID is valid. Once you’ve looked at the code, ask
yourself: Is it immediately obvious what the criterion for an ID being valid is? For most
engineers the answer to that is no.

Boolean isIdValid(UInt16 id) {
 return countSetBits(id & 0x7FFF) % 2 == ((id & 0x8000) >> 15);
}

The code is checking a parity bit, which is a type of error detection sometimes used
when transmitting data. The 16-bit ID contains a 15-bit value stored in the least signif-
icant 15 bits and a parity bit stored in the most significant bit. The parity bit indicates
if an even or odd number of bits are set in the 15-bit value.

 The lines of code in listing 5.9 are not very readable or self-explanatory, and,
despite being succinct, they contain a lot of assumptions and complexity, such as the
following:

 The least significant 15 bits of the ID contain the value.
 The most significant bit of the ID contains the parity bit.
 The parity bit is zero if there are an even number of bits set in the 15-bit value.
 The parity bit is one if there are an odd number of bits set in the 15-bit value.
 0x7FFF is a bit mask for the least significant 15-bits.
 0x8000 is a bit mask for the most significant bit.

The problems with compacting all these details and assumptions down into one line
of very succinct code are as follows:

 Other engineers have to put a lot of effort and head scratching into figuring
out and extracting these details and assumptions from the one line of code.
This wastes their time and also increases the chance that they misunderstand
something and end up breaking the code.

Listing 5.9 Succinct but unreadable code

114 CHAPTER 5 Make code readable
 These assumptions need to align with some assumptions made elsewhere.
There is some code somewhere else that is encoding these IDs. If that code is
modified to place the parity bit in the least significant bit (for example), then
the code in listing 5.9 would stop functioning correctly. It would be better if
subproblems like the location of the parity bit are broken out into a single
source of truth that can be reused.

The code in listing 5.9 may be succinct, but it is also near unreadable. Multiple engi-
neers will potentially waste a lot of time trying to understand what it does. The num-
ber of nonobvious and undocumented assumptions that the code makes also make it
quite fragile and easy to break.

5.3.2 Solution: Make code readable, even if it requires more lines

It would be much better if the assumptions and details of the ID encoding and parity
bit are obvious to anyone reading the code, even if this requires using more lines. List-
ing 5.10 shows how the code could be made a lot more readable. It defines some well-
named helper functions and constants. This makes the code a lot easier to understand
and ensures that the solutions to subproblems are reusable, but it also results in many
more lines of code.

Boolean isIdValid(UInt16 id) {
 return extractEncodedParity(id) ==
 calculateParity(getIdValue(id));
}

private const UInt16 PARITY_BIT_INDEX = 15;
private const UInt16 PARITY_BIT_MASK = (1 << PARITY_BIT_INDEX);
private const UInt16 VALUE_BIT_MASK = ~PARITY_BIT_MASK;

private UInt16 getIdValue(UInt16 id) {
 return id & VALUE_BIT_MASK;
}

private UInt16 extractEncodedParity(UInt16 id) {
 return (id & PARITY_BIT_MASK) >> PARITY_BIT_INDEX;
}

// Parity is 0 if an even number of bits are set and 1 if
// an odd number of bits are set.
private UInt16 calculateParity(UInt16 value) {
 return countSetBits(value) % 2;
}

It’s generally good to keep an eye on the number of lines of code being added, as it can
be a warning sign that the code is not reusing existing solutions or is overcomplicating
something. But it’s often more important to ensure that the code is understandable,

Listing 5.10 Verbose but readable code

115Stick to a consistent coding style
robust, and unlikely to result in buggy behavior. If it requires more lines of code to
effectively do this, then that’s fine.

5.4 Stick to a consistent coding style
If we are writing a sentence, there are certain rules that we have to follow if we want to
produce something that is grammatically correct. In addition, there are other stylistic
guidelines that we should follow to ensure our sentence is readable.

 As an example, imagine we are writing something about software as a service. Usually
if words like a and as are included in an acronym (or initialism) they are abbreviated
using a lowercase character. The most familiar acronym for software as a service is there-
fore written SaaS. If we wrote the acronym as SAAS, then anyone reading our docu-
ment might wonder if we are referring to something else, because it’s not how they
expect software as a service to be abbreviated.

 The same applies to code. The language syntax and the compiler dictate what is
allowed (a bit like grammar rules), but as the engineers writing the code, we have a lot
of freedom over what stylistic conventions we adopt.

5.4.1 An inconsistent coding style can cause confusion

Listing 5.11 contains some code from a class to manage a chat between a group of
users. This class is used within a server that manages many group chats simultaneously.
The class contains an end() function that, when called, should end the chat by termi-
nating the connections to all the users in that chat.

 A common style convention when writing code is that class names are written in
PascalCase (first letter capitalized), whereas variable names are written in camelCase
(first letter in lowercase). Without seeing the whole class definition, an obvious
assumption would therefore be that connectionManager is an instance variable
within the GroupChat class. Calling connectionManager.terminateAll() should
therefore terminate the connections for the given chat but leave other chats being
administered by the server unaffected.

class GroupChat {
 ...

 end() {
 connectionManager.terminateAll();
 }
}

Unfortunately our assumption is wrong, and this code is very broken. connection-
Manager is not an instance variable; it is in fact a class, and terminateAll() is a
static function on it. Calling connectionManager.terminateAll() terminates all
connections for every chat that the server is managing, not just the one associated

Listing 5.11 Inconsistent naming style

We’ve assumed that
connectionManager is
an instance variable.

116 CHAPTER 5 Make code readable
with that particular instance of the GroupChat class. The following listing shows the
code for the connectionManager class.

class connectionManager {
 ...
 static terminateAll() {
 ...
 }
}

This bug would likely have been spotted (and avoided) if the connectionManager
class had followed the standard naming convention and instead been called
ConnectionManager. By not sticking to this convention, the code that uses the
connectionManager class is easy to misunderstand, and this can result in a serious
bug that might go unnoticed.

5.4.2 Solution: Adopt and follow a style guide

As just noted, a common coding style convention is that class names should be written
in PascalCase and variable names should be written in camelCase. If this convention
were followed then the connectionManager class would instead be named
ConnectionManager. The buggy code from the last section would then look like list-
ing 5.13. It’s now very obvious that ConnectionManager is a class and not an
instance variable within the GroupChat class. It’s also now obvious that a call like
ConnectionManager.terminateAll() is probably modifying some global state
and likely affecting other parts of the server.

class GroupChat {
 ...

 end() {
 ConnectionManager.terminateAll();
 }
}

This is just one example of how a consistent coding style can make code more read-
able and help prevent bugs. Coding styles often cover many more aspects than just
how to name things, such as the following:

 Usage of certain language features
 How to indent code
 Package and directory structuring
 How to document code

Most organizations and teams have a coding style guide that they expect engineers to
follow, so it’s unlikely you need to make any decisions or think too hard about what

Listing 5.12 connectionManager class

Listing 5.13 Consistent naming style

Terminates all connections
currently being managed
by the server

It’s obvious that
ConnectionManager is a class,
not an instance variable.

117Avoid deeply nesting code
style to adopt. It’s likely just a case of reading and absorbing the style guide that your
team mandates, and following it.

 If your team doesn’t have a style guide and you’d like to align around one, then
there are many off-the-shelf ones you can adopt. Google, for example, has published
style guides for a number of languages: https://google.github.io/styleguide/.

 When a whole team or organization all follow the same coding style, it’s akin to
them all speaking the same language fluently. The risk of misunderstanding each
other is greatly reduced, and this results in fewer bugs and less time wasted trying to
understand confusing code.

5.5 Avoid deeply nesting code
A typical piece of code is made up of blocks that get nested within one another, such
as the following:

 A function defines a block of code that runs when the function is called.
 An if-statement defines a block of code that runs when the condition is true.
 A for-loop defines a block of code that runs on each iteration of the loop.

Figure 5.1 illustrates how control-flow logic (such as if-statements and for-loops) can
result in blocks of code that are nested within one another. There is usually more than
one way to structure a given piece of logic in code. Some forms can result in lots of
nesting of blocks of code, while others can result in almost no nesting. It’s important
to consider how the structure of the code affects readability.

Figure 5.1 Control-flow logic (such as if-statements and for-loops) can often result in
blocks of code that are nested within one another.

Linters
There are also tools available that can inform us of any style guide violations that our
code might contain. These are called linters and are typically specific to whatever lan-
guage we are using. Some linters do a lot more than just check for style guide viola-
tions and can also warn us of code that is error prone or that exhibits some known
bad practices.

Linters generally only catch quite simple issues, so they’re not a replacement for writ-
ing good code in the first place. But running a linter can be a quick and easy way to
spot some of the ways in which code can be improved.

if (...) {

}

for (...) {

}

if (...) {

}

... If-statement block

For-statement block

If-statement block

Nested within

Nested within

https://google.github.io/styleguide/

118 CHAPTER 5 Make code readable
5.5.1 Deeply nested code can be hard to read

 Listing 5.14 contains some code to look up an address for the owner of a vehicle. The
code contains several if-statements nested inside one another. This results in code that
is quite hard to read, both because it’s hard for the eye to follow and because of all the
dense if-else logic that needs to be navigated to figure out when certain values are
returned.

Address? getOwnersAddress(Vehicle vehicle) {
 if (vehicle.hasBeenScraped()) {
 return SCRAPYARD_ADDRESS;
 } else {
 Purchase? mostRecentPurchase =
 vehicle.getMostRecentPurchase();
 if (mostRecentPurchase == null) {
 return SHOWROOM_ADDRESS;
 } else {
 Buyer? buyer = mostRecentPurchase.getBuyer();
 if (buyer != null) {
 return buyer.getAddress();
 }
 }
 }
 return null;
}

Human eyes are not good at keeping track of exactly what level of nesting each line of
code has. This can make it difficult for anyone reading the code to understand exactly
when different pieces of logic run. Deeply nesting code reduces readability, and it’s
often better to structure code in a way that minimizes the amount of nesting.

5.5.2 Solution: Restructure to minimize nesting

When we have a function like that in the previous example, it’s often quite easy to
rearrange the logic to avoid nesting if-statements inside one another. Listing 5.15
shows how this function could be rewritten with no nesting of if-statements. The code
is more readable as it’s easier for the eye to follow and the logic is presented in a less
dense and impenetrable way.

Address? getOwnersAddress(Vehicle vehicle) {
 if (vehicle.hasBeenScraped()) {
 return SCRAPYARD_ADDRESS;
 }
 Purchase? mostRecentPurchase =
 vehicle.getMostRecentPurchase();
 if (mostRecentPurchase == null) {

Listing 5.14 Deeply nested if-statements

Listing 5.15 Code with minimal nesting

If-statements nested
within other
if-statements

It’s hard to figure out
the scenarios in which
this line is reachable.

119Avoid deeply nesting code
 return SHOWROOM_ADDRESS;
 }
 Buyer? buyer = mostRecentPurchase.getBuyer();
 if (buyer != null) {
 return buyer.getAddress();
 }
 return null;
}

When every branch of nested logic results in a return statement, it’s usually quite easy
to rearrange the logic to avoid nesting. However, when branches of nesting don’t
result in return statements, it’s usually a sign that a function is doing too much. The
next subsection explores this.

5.5.3 Nesting is often a result of doing too much

Listing 5.16 shows a function that does too much by containing both the logic to look
up a vehicle owner’s address and the logic that makes use of the address to trigger
sending a letter. Because of this, it’s not straightforward to apply the fix seen in the
previous subsection, as returning early from the function would obviously mean that
the letter is not sent.

SentConfirmation? sendOwnerALetter(
 Vehicle vehicle, Letter letter) {
 Address? ownersAddress = null;
 if (vehicle.hasBeenScraped()) {
 ownersAddress = SCRAPYARD_ADDRESS;
 } else {
 Purchase? mostRecentPurchase =
 vehicle.getMostRecentPurchase();
 if (mostRecentPurchase == null) {
 ownersAddress = SHOWROOM_ADDRESS;
 } else {
 Buyer? buyer = mostRecentPurchase.getBuyer();
 if (buyer != null) {
 ownersAddress = buyer.getAddress();
 }
 }
 }
 if (ownersAddress == null) {
 return null;
 }
 return sendLetter(ownersAddress, letter);
}

The real problem here is that this function does too much. It contains the nuts-and-
bolts logic for finding the address, as well as the logic to trigger sending the letter. We
can solve this by breaking the code into smaller functions, which the next subsection
will show.

Listing 5.16 A function that does too much

A mutable variable
to hold the result of
finding the address

If-statements nested
within other
if-statements

Logic that makes
use of the address

120 CHAPTER 5 Make code readable
5.5.4 Solution: Break code into smaller functions

The code from the previous subsection can be improved by breaking the logic to find
the owner’s address out into a different function. It then becomes easy to apply the fix
we saw earlier in this section to eliminate the nesting of if-statements. The following
listing shows what this would look like.

SentConfirmation? sendOwnerALetter(
 Vehicle vehicle, Letter letter) {
 Address? ownersAddress = getOwnersAddress(vehicle);
 if (ownersAddress != null) {
 return sendLetter(ownersAddress, letter);
 }
 return null;
}

Address? getOwnersAddress(Vehicle vehicle) {
 if (vehicle.hasBeenScraped()) {
 return SCRAPYARD_ADDRESS;
 }
 Purchase? mostRecentPurchase = vehicle.getMostRecentPurchase();
 if (mostRecentPurchase == null) {
 return SHOWROOM_ADDRESS;
 }
 Buyer? buyer = mostRecentPurchase.getBuyer();
 if (buyer == null) {
 return null;
 }
 return buyer.getAddress();
}

Chapter 2 discussed how doing too much inside a single function can lead to poor lay-
ers of abstraction, so even without lots of nesting, it’s often still a good idea to break
large functions up. When there is lots of nesting in the code, breaking a large func-
tion up becomes doubly important, because it is often the necessary first step for elim-
inating the nesting.

5.6 Make function calls readable
If a function is well named, then it should be obvious what it does, but even for a well-
named function, it’s easy to have unreadable function calls if it’s not clear what the
arguments are for or what they do.

NOTE: LARGE NUMBERS OF PARAMETERS Function calls tend to get less read-
able as the number of arguments increases. If a function or constructor has a
large number of parameters it can often be a sign of a more fundamental
problem with the code, such as not defining appropriate layers of abstraction
or not modularizing things enough. Chapter 2 already discussed layers of
abstraction, and chapter 8 will cover modularity in more detail.

Listing 5.17 Smaller functions

Logic to find owner’s
address in a
separate function

Nesting of
if-statements
eliminated

121Make function calls readable
5.6.1 Arguments can be hard to decipher

Consider the following code snippet that contains a call to a function that sends a mes-
sage. It’s not clear what the arguments in the function call represent. We can guess that
"hello" is probably the message, but we have no idea what 1 or true mean.

sendMessage("hello", 1, true);

To figure out what the 1 and true arguments in the call to sendMessage() mean,
we’d have to go and look at the function definition. If we did that we’d see that the 1
represents a message priority and the true indicates that sending of the message can
be retried:

void sendMessage(String message, Int priority, Boolean allowRetry) {
 ...
}

This gives us the answer to what the values in the function call mean, but we had to
find the function definition to figure this out. This might be quite a laborious task as
the function definition might well be in a completely different file or hundreds of
lines of code away. If we have to refer to a different file or something many lines away
to figure out what a given piece of code does, then that code is not very readable.
There are a few potential ways to improve this, and the following subsections explore
some of these solutions.

5.6.2 Solution: Use named arguments

Named arguments are supported by an increasing number of languages, especially
more modern ones. When using named arguments in a function call, arguments are
matched based on their name rather than their position within the argument list. If
we used named arguments, then the call to the sendMessage() function would be
very readable, even without ever having seen the function definition:

sendMessage(message: "hello", priority: 1, allowRetry: true);

Unfortunately not all languages support named arguments, so this is an option only if
we are using a language that does. Despite this, there are sometimes ways of faking
named arguments. This is quite common in TypeScript (and other forms of Java-
Script) using object destructuring. Listing 5.18 shows how the sendMessage() function
could make use of object destructuring if it were written in TypeScript. The function
accepts a single object (with the type SendMessageParams) as a parameter, but this
object is immediately destructured into its constituent properties. Code inside the
function can then read these properties directly.

interface SendMessageParams {
 message: string,
 priority: number,

Listing 5.18 Object destructuring in TypeScript

Interface to define the type
of the function parameter

122 CHAPTER 5 Make code readable
 allowRetry: boolean,
}

async function sendMessage(
 {message, priority, allowRetry} : SendMessageParams) {
 const outcome = await XhrWrapper.send(
 END_POINT, message, priority);
 if (outcome.failed() && allowRetry) {
 ...
 }
}

The following snippet shows what a call to the sendMessage() function would look
like. The function is called with an object, meaning each value is associated with a
property name. This achieves more or less the same thing as named arguments.

sendMessage({
 message: 'hello',
 priority: 1,
 allowRetry: true,
});

Using a destructured object to achieve the same benefits as named arguments is rela-
tively common in TypeScript (as well as other forms of JavaScript), so despite being a
bit of a work-around, it’s usually something that other engineers will be familiar with.
There are sometimes ways of faking named arguments in other languages, but they
can cause more problems than they solve if they use a language feature that other
engineers might be unfamiliar with.

5.6.3 Solution: Use descriptive types

Whether the language we’re using supports named arguments or not, it can often be a
good idea to use more descriptive types when defining a function. In the scenario we
saw at the start of this section (repeated again in the following snippet), the author of
the sendMessage() function used an integer to represent the priority and a Boolean
to represent whether retries are allowed.

void sendMessage(String message, Int priority, Boolean allowRetry) {
 ...
}

Integers and Booleans aren’t very descriptive in themselves because they can mean all
manner of things depending on the scenario. An alternative would be to use types
that describe what they represent when writing the sendMessage() function. Listing
5.19 shows two different techniques for achieving this:

 A class—The message priority has been wrapped in a class.
 An enum—The retry policy now uses an enum with two options instead of a

Boolean.

 The function parameter is
immediately destructured

into its properties.

Properties from the
destructured object
can be used directly.

Argument names are
associated with each value.

123Make function calls readable
class MessagePriority {
 ...
 MessagePriority(Int priority) { ... }
 ...
}

enum RetryPolicy {
 ALLOW_RETRY,
 DISALLOW_RETRY
}

void sendMessage(
 String message,
 MessagePriority priority,
 RetryPolicy retryPolicy) {
 ...
}

A call to this function would then be very readable, even without knowing the func-
tion definition:

sendMessage("hello", new MessagePriority(1), RetryPolicy.ALLOW_RETRY);

5.6.4 Sometimes there’s no great solution

Sometimes there is no particularly good way to ensure that function calls are readable.
To demonstrate this, imagine we needed a class to represent a 2D bounding box. We
might write code for a BoundingBox class similar to that in listing 5.20. The construc-
tor takes four integers to represent the positions of the edges of the box.

class BoundingBox {
 ...
 BoundingBox(Int top, Int right, Int bottom, Int left) {
 ...
 }
}

If the language we’re using doesn’t support named arguments, then a call to this con-
structor is not very readable because it contains a series of numbers with no hints
about what each number represents. Because all the arguments are integers, it’s also
very easy for an engineer to get confused about the order, make a complete mess of
things, and still have code that compiles just fine. The following snippet shows an
example of a call to the BoundingBox constructor:

BoundingBox box = new BoundingBox(10, 50, 20, 5);

There’s no particularly satisfactory solution in this scenario, and about the best thing
that we can do here is to use some inline comments when calling the constructor to

Listing 5.19 Descriptive types in function call

Listing 5.20 BoundingBox class

124 CHAPTER 5 Make code readable
explain what each argument is. If we did this, then a call to the constructor would look
something like the following:

BoundingBox box = new BoundingBox(
 /* top= */ 10,
 /* right= */ 50,
 /* bottom= */ 20,
 /* left= */ 5);

The inline comments definitely make the call to the constructor more readable. But
they rely on us not having made a mistake when writing them and on other engineers
keeping them up to date, so they’re not that satisfactory as a solution. There’s also an
argument to be made for not using these inline comments because of the risk that
they become out-of-date; an out-of-date (and therefore incorrect) comment is proba-
bly worse than having no comment.

 Adding setter functions or using something like the builder pattern (covered in
chapter 7) are alternative options, but both have the downside that they make the
code easy to misuse by allowing a class to be instantiated with missing values. This
would need to be prevented with a runtime check (rather than a compile-time check)
to ensure that the code is correct.

5.6.5 What about the IDE?

Some integrated development environments (IDEs) look up function definitions in
the background. They then augment the view of the code so that function argument
names are displayed at call sites. Figure 5.2 shows what this can look like.

While this can be incredibly useful when editing code, it’s usually best not to rely on this
to make the code readable. It’s probably not guaranteed that every engineer is using an
IDE that does this, and there are likely other tools in which the code is viewed that don’t
have this feature, such as codebase explorer tools, merge tools, and code review tools.

5.7 Avoid using unexplained values
There are many scenarios where a hard-coded value is required. Some common exam-
ples are as follows:

 A coefficient for converting one quantity to another
 A number that is a tunable parameter, such as the maximum number of times

to retry a certain task if it fails
 A string that represents a template that some values can be populated in

sendMessage("hello", 1, true);

The actual code

How the code appears in the IDE

message: priority: allowRetry:sendMessage(1, true);"hello"

Figure 5.2 Some IDEs augment
the view of the code to make
function calls more readable.

125Avoid using unexplained values
For all these hard-coded values, there are two important pieces of information:

 What the value is—The computer needs to know this when it executes the code.
 What the value means—An engineer needs to know this in order to understand

the code. Without this information, the code is not readable.

It’s obviously a given that there’s a value or else the code would presumably not com-
pile or function, but it can be easy to forget to make it clear to other engineers what
the value actually means.

5.7.1 Unexplained values can be confusing

Listing 5.21 shows some of the functions in a class to represent a vehicle. The function
getKineticEnergyJ() calculates the current kinetic energy of the vehicle, in joules
(J), based on the vehicle’s mass and speed. The vehicle’s mass is stored in US tons,
while the speed is stored in miles per hour (MPH). The equation for calculating
kinetic energy in joules (½·m·v2) requires the mass to be in kilograms and the speed
to be in meters per second, so the getKineticEnergyJ() contains two conversion
coefficients. What these coefficients mean is not obvious from the code; anyone not
already familiar with the equation for kinetic energy would likely not know what these
constants represent.

class Vehicle {
 ...

 Double getMassUsTon() { ... }

 Double getSpeedMph() { ... }

 // Returns the vehicle's current kinetic energy in joules.
 Double getKineticEnergyJ() {
 return 0.5 *
 getMassUsTon() * 907.1847 *
 Math.pow(getSpeedMph() * 0.44704, 2);
 }
}

Having unexplained values like this makes the code less readable because many engi-
neers will not understand why those values are there or what they do. When an engi-
neer has to modify some code that they don’t understand, the chance that the code
becomes broken is increased.

 Imagine an engineer is modifying the vehicle class to get rid of the getMassUs-
Ton() function and replace it with a getMassKg() function that returns the mass in
kilograms. They have to modify the call to getMassUsTon() within getKinetic-
EnergyJ() to call this new function. But because they don’t understand that the
value 907.1847 is converting US tons to kilograms, they may not realize that they now

Listing 5.21 Vehicle class

Unexplained value that
converts US tons to kilograms

Unexplained value
that converts MPH to
meters per second

126 CHAPTER 5 Make code readable
also need to remove this too. After their modifications the getKineticEnergyJ()
function would be broken:

...
 // Returns the vehicle's current kinetic energy in joules.
 Double getKineticEnergyJ() {
 return 0.5 *
 getMassKg() * 907.1847 *
 Math.pow(getSpeedMph() * 0.44704, 2);
 }
...

Having an unexplained value in the code can cause confusion and bugs. It’s impor-
tant to ensure that what the value means is obvious to other engineers. The following
two subsections show different ways in which this can be achieved.

5.7.2 Solution: Use a well-named constant

One simple way to explain values is to give them a name by placing them inside a con-
stant. Instead of using the value directly in the code, the constant is used, meaning
its name explains the code. The following listing shows what the getKinetic-
EnergyJ() function and surrounding Vehicle class would look like if the values are
placed inside constants.

class Vehicle {
 private const Double KILOGRAMS_PER_US_TON = 907.1847;
 private const Double METERS_PER_SECOND_PER_MPH = 0.44704;
 ...

 // Returns the vehicle's current kinetic energy in joules.
 Double getKineticEnergyJ() {
 return 0.5 *
 getMassUsTon() * KILOGRAMS_PER_US_TON *
 Math.pow(getSpeedMph() * METERS_PER_SECOND_PER_MPH, 2);
 }
}

The code is now a lot more readable, and if an engineer modifies the Vehicle class
to use kilograms instead of US tons, it would likely be obvious to them that multiply-
ing the mass by KILOGRAMS_PER_US_TON is no longer correct.

5.7.3 Solution: Use a well-named function

An alternative to using a well-named constant is to use a well-named function. There
are two alternative ways in which a function can be used to make the code readable:

 A provider function that returns the constant
 A helper function that does the conversion

Listing 5.22 Well-named constants

907.1847 has not been
removed; the function
returns the wrong value.

Constant definitions

Constants used
in code

127Avoid using unexplained values
A PROVIDER FUNCTION

This is conceptually almost the same as using a constant, just achieved in a slightly dif-
ferent way. The following listing shows the getKineticEnergyJ() function and two
additional functions to provide the conversion coefficients: kilogramsPerUsTon()
and metersPerSecondPerMph().

class Vehicle {
 ...
 // Returns the vehicle's current kinetic energy in joules.
 Double getKineticEnergyJ() {
 return 0.5 *
 getMassUsTon() * kilogramsPerUsTon() *
 Math.pow(getSpeedMph() * metersPerSecondPerMph(), 2);
 }

 private static Double kilogramsPerUsTon() {
 return 907.1847;
 }

 private static Double metersPerSecondPerMph() {
 return 0.44704;
 }
}

A HELPER FUNCTION

An alternative would be to treat the conversion of quantities as subproblems that
should be solved by dedicated functions. The fact that a value is involved in the partic-
ular conversion is an implementation detail that callers don’t need to be aware of.
The following listing shows the getKineticEnergyJ() function and two additional
functions that solve the conversion subproblems: usTonsToKilograms() and mph-
ToMetersPerSecond().

class Vehicle {
 ...
 // Returns the vehicle's current kinetic energy in joules.
 Double getKineticEnergyJ() {
 return 0.5 *
 usTonsToKilograms(getMassUsTon()) *
 Math.pow(mphToMetersPerSecond(getSpeedMph()), 2);
 }

 private static Double usTonsToKilograms(Double usTons) {
 return usTons * 907.1847;
 }

 private static Double mphToMetersPerSecond(Double mph) {
 return mph * 0.44704;
 }
}

Listing 5.23 Well-named functions to provide values

Listing 5.24 Helper functions to perform conversions

Provider
functions called

Provider
functions

Helper functions called

Helper
functions

128 CHAPTER 5 Make code readable
As the previous examples show, there are three good ways to avoid having unex-
plained values in our code. It generally requires very little extra work to place a value
inside a constant or function and can greatly improve readability.

 As a final point, it’s also worth considering if other engineers might want to reuse
the value or helper function we’re defining. If there’s a chance that they might, then
it’s best to place it in a public utility class somewhere rather than just keeping it inside
the class that we’re using it within.

5.8 Use anonymous functions appropriately
Anonymous functions are functions that don’t have a name, and they’re typically
defined inline in some code at the point that they are needed. The syntax for defining
an anonymous function varies between different languages. Listing 5.25 shows a
function to get all the pieces of feedback that contain a nonempty comment. It calls
the List.filter() function using an anonymous function. For completeness, the
listing also shows what the filter function on the List class might look like.
List.filter() takes a function as a parameter, and callers can provide an anony-
mous function here if they want.

class List<T> {
 ...
 List<T> filter(Function<T, Boolean> retainIf) {
 ...
 }
}

List<Feedback> getUsefulFeedback(List<Feedback> allFeedback) {
 return allFeedback
 .filter(feedback -> !feedback.getComment().isEmpty());
}

Most mainstream languages support anonymous functions in some form. Using them
for small, self-explanatory things can increase the readability of code, but using them
for anything that is big, non–self-explanatory, or that could be reused can cause prob-
lems. The following subsections explain why.

Listing 5.25 An anonymous function as an argument

Functional programming
Anonymous functions and using functions as parameters are techniques most com-
monly associated with functional programming and in particular the use of lambda
expressions. Functional programming is a paradigm where logic is expressed as calls
or references to functions rather than as imperative statements that modify state.
There are a number of languages that are “pure” functional programming languages.
The languages that this book is most applicable to would not be considered pure
functional languages. Most of them do, nonetheless, incorporate features that allow
functional-style code to be written in many scenarios.

Takes a function
as a parameter

List.filter() called with an
inline, anonymous function

129Use anonymous functions appropriately
5.8.1 Anonymous functions can be great for small things

The code we just saw (repeated in the following snippet) uses an anonymous function
to get the pieces of feedback that contain a nonempty comment. This only requires a
single statement of code, and because the problem being solved is trivial this single
statement is very readable and compact.

List<Feedback> getUsefulFeedback(List<Feedback> allFeedback) {
 return allFeedback
 .filter(feedback -> !feedback.getComment().isEmpty());
}

In this scenario, using an anonymous function is fine because the logic within it is
small, simple, and self-explanatory. The alternative would have been to define a
named function for determining if a piece of feedback contains a nonempty com-
ment. Listing 5.26 shows how the code would look if a named function is used instead.
It requires more boilerplate to define the named function, which some engineers may
find less readable.

List<Feedback> getUsefulFeedback(List<Feedback> allFeedback) {
 return allFeedback.filter(hasNonEmptyComment);
}

private Boolean hasNonEmptyComment(Feedback feedback) {
 return !feedback.getComment().isEmpty();
}

NOTE Even with logic as simple as that in listing 5.26, defining a dedicated
named function might still be useful from a code reusability perspective. If
there’s any chance that someone might need to reuse the logic to check if a
piece of feedback has a nonempty comment, then it might be better to put it
in a named function rather than an anonymous one.

5.8.2 Anonymous functions can be hard to read

As was covered earlier in this chapter (as well as earlier in the book), function names
can be very useful for increasing code readability, as they provide a succinct summary
of what the code inside the function does. Because anonymous functions are, by defi-
nition, nameless, they don’t provide anyone reading the code with this summary.
Regardless of how small it is, if the contents of an anonymous function are not self-
explanatory then the code is likely not readable.

If you want to learn more about functional programming, the following article contains
a more detailed description: http://mng.bz/qewE

Listing 5.26 A named function as an argument

Anonymous function to check
comment is not empty

Named function used
as an argument

A named
function

http://mng.bz/qewE

130 CHAPTER 5 Make code readable
 Listing 5.27 shows the code for a function that takes a list of 16-bit IDs and returns
only the valid ones. The format of an ID is a 15-bit value in combination with a parity
bit, and an ID is considered valid if it’s nonzero and the parity bit is correct. The
logic for checking the parity bit is inside an anonymous function, but it’s not self-
explanatory that this code is checking a parity bit. This means that the code is less
readable than it ideally should be.

List<UInt16> getValidIds(List<UInt16> ids) {
 return ids
 .filter(id -> id != 0)
 .filter(id -> countSetBits(id & 0x7FFF) % 2 ==
 ((id & 0x8000) >> 15));
}

This is the same succinct but unreadable code seen earlier in the chapter. Logic like
this needs explaining because most engineers have no idea what it does. And because
anonymous functions offer no explanation beyond the code inside them, this is prob-
ably not a good use of one.

5.8.3 Solution: Use named functions instead

Anyone reading the getValidIds() function from the previous example is probably
only interested in knowing the high-level details of how to get valid IDs. In order to do
this, they only need to be aware of the two conceptual reasons for an ID being valid:

 It’s nonzero.
 The parity bit is correct.

They shouldn’t be forced to contend with lower level concepts like bitwise operations
in order to understand the high-level reason an ID is or isn’t valid. It would be better
to use a named function to abstract away the implementation details of checking a
parity bit.

 Listing 5.28 shows what this might look like. The getValidIds() function is now
incredibly easy to read; anyone reading it immediately understands that it does two
things: filter out nonzero IDs and filter out IDs with an incorrect parity bit. If they
want to understand the details of parity bits they can look at the helper function, but
they’re not forced to contend with these details just to understand the getValid-
Ids() function. Another benefit of using a named function is that the logic for check-
ing a parity bit can now be easily reused.

List<UInt16> getValidIds(List<UInt16> ids) {
 return ids
 .filter(id -> id != 0)
 .filter(isParityBitCorrect);
}

Listing 5.27 A non–self-explanatory anonymous function

Listing 5.28 Using a named function

Anonymous function to
check the parity bit

Named function used
as an argument

131Use anonymous functions appropriately
private Boolean isParityBitCorrect(UInt16 id) {
 ...
}

As we saw in chapter 3, looking at the names of things is one of the primary ways in
which engineers understand code. The downside of naming things is that it often cre-
ates extra verbosity and boilerplate. Anonymous functions are great at reducing ver-
bosity and boilerplate, but with the disadvantage that the function no longer has a
name. For small, self-explanatory things this is usually fine, but for anything bigger or
more complicated, the benefits of giving a function a name usually outweigh the
downsides of the extra verbosity.

5.8.4 Large anonymous functions can be problematic

From personal experience, I find that engineers sometimes conflate functional-style
programming with the use of inline, anonymous functions. Adopting a functional
style of programming has many benefits that can often make code more readable and
more robust. As the previous examples in this section show, we can quite easily write
functional-style code using named functions; adopting a functional style does not
imply that we have to use inline, anonymous functions.

 Chapter 2 discussed the importance of keeping functions small and concise so that
it’s easy for engineers to read, understand, and reuse them. When writing functional-
style code, some engineers forget this and produce enormous anonymous functions
that contain way too much logic and sometimes even other anonymous functions
nested within one another. If an anonymous function starts approaching anything
more than two or three lines long, then it’s quite likely the code would be more read-
able if the anonymous function were broken apart and placed into one or more
named functions.

 To demonstrate this, listing 5.29 shows some code to display a list of pieces of feed-
back in a UI. The buildFeedbackListItems() function contains a very large
inline, anonymous function within it. This anonymous function, in turn, contains
another anonymous function within it. The amount of logic densely packed together,
as well as the amount of nesting and indentation, make this code hard to read. In par-
ticular it’s quite hard to figure out what information is actually displayed in the UI, as
this information is spread all over the place. Once we read all the code, we can see
that the UI displays a title, the feedback comment, and some categories, but it is not
easy to figure this out.

void displayFeedback(List<Feedback> allFeedback) {
 ui.getFeedbackWidget().setItems(
 buildFeedbackListItems(allFeedback));
}

private List<ListItem> buildFeedbackListItems(
 List<Feedback> allFeedback) {

Listing 5.29 A large anonymous function

A named function for
checking the parity bit

132 CHAPTER 5 Make code readable

A

 return allFeedback.map(feedback ->
 new ListItem(
 title: new TextBox(
 text: feedback.getTitle(),
 options: new TextOptions(weight: TextWeight.BOLD),
),
 body: new Column(
 children: [
 new TextBox(
 text: feedback.getComment(),
 border: new Border(style: BorderStyle.DASHED),
),
 new Row(
 children: feedback.getCategories().map(category ->
 new TextBox(
 text: category.getLabel(),
 options: new TextOptions(style: TextStyle.ITALIC),
),
),
),
],
),
)
);
}

To be fair, many of the problems with the code in listing 5.29 are not totally down to
the fact that anonymous functions are being used. Even if all this code were moved to
a single, massive named function, it would still be a mess. The real issue is that the
function does way too much, which is exacerbated by the use of anonymous functions,
but not entirely caused by it. The code would be a lot more readable if it were broken
up into smaller named functions.

5.8.5 Solution: Break large anonymous functions into named functions

Listing 5.30 shows what the buildProductListItems() function that we just saw
looks like if the logic is broken up into a series of well-named helper functions. The
code is more verbose but significantly more readable. Importantly, an engineer can
now look at the buildFeedbackItem() function and immediately see what informa-
tion is displayed in the UI for each piece of feedback: the title, comment, and catego-
ries that the feedback applies to.

private List<ListItem> buildFeedbackListItems(
 List<Feedback> allFeedback) {
 return allFeedback.map(buildFeedbackItem);
}

private ListItem buildFeedbackItem(Feedback feedback) {
 return new ListItem(

Listing 5.30 Smaller named functions

List.map() called with
an anonymous function

A title is
displayed.

The comment
is displayed.

 second anonymous
function nested

within the main one

Some categories
are displayed.

List.map() called with
a named function

133Use shiny, new language features appropriately
 title: buildTitle(feedback.getTitle()),
 body: new Column(
 children: [
 buildCommentText(feedback.getComment()),
 buildCategories(feedback.getCategories()),
],
),
);
}

private TextBox buildTitle(String title) {
 return new TextBox(
 text: title,
 options: new TextOptions(weight: TextWeight.BOLD),
);
}

private TextBox buildCommentText(String comment) {
 return new TextBox(
 text: comment,
 border: new Border(style: BorderStyle.DASHED),
);
}

private Row buildCategories(List<Category> categories) {
 return new Row(
 children: categories.map(buildCategory),
);
}

private TextBox buildCategory(Category category) {
 return new TextBox(
 text: category.getLabel(),
 options: new TextOptions(style: TextStyle.ITALIC),
);
}

Breaking apart large functions that do too much is a great way to improve the readabil-
ity of code (as well as its reusability and modularity). It’s important not to forget this
when writing functional-style code: if an anonymous function starts getting big and
unwieldy, then it’s probably time to move the logic to some named functions instead.

5.9 Use shiny, new language features appropriately
Everyone loves shiny new things, and engineers are no different. Many programming
languages are still being actively developed, and every now and again the language
designers add a nice, new, shiny feature. When this happens engineers are often eager
to make use of this new feature.

 Programming language designers think very carefully before adding a new feature,
so there are likely many scenarios where the new feature makes code considerably
more readable or robust. It’s good that engineers get excited about these things

A title
is displayed.

The comment
is displayed.

Some categories
are displayed.

List.map() called
with a named function

134 CHAPTER 5 Make code readable
because it increases the chance that the new feature gets used to improve code. But if
you find yourself eager to use a new or shiny language feature, make sure you’re hon-
est with yourself about whether it’s really the best tool for the job.

5.9.1 New features can improve code

When Java 8 introduced streams, many engineers got excited, as it provided a way to
write much more succinct, functional-style code. To provide an example of how
streams can improve code, listing 5.31 shows some traditional Java code that takes a
list of strings and filters out any that are empty. The code is quite verbose (for what
is a conceptually quite simple task) and requires using a for-loop and instantiating a
new list.

List<String> getNonEmptyStrings(List<String> strings) {
 List<String> nonEmptyStrings = new ArrayList<>();
 for (String str : strings) {
 if (!str.isEmpty()) {
 nonEmptyStrings.add(str);
 }
 }
 return nonEmptyStrings;
}

Using a stream can make this code a lot more succinct and readable. The following
listing shows how the same functionality could be implemented using a stream and a
filter.

List<String> getNonEmptyStrings(List<String> strings) {
 return strings
 .stream()
 .filter(str -> !str.isEmpty())
 .collect(toList());
}

This seems like a good use of this language feature, as the code has become more
readable and succinct. Making use of a language feature (instead of hand-rolling
something) also increases the chance that the code is optimally efficient and bug-free.
Using a language feature when it improves code is generally a good idea (but see the
next two subsections).

5.9.2 Obscure features can be confusing

Even if a language feature affords a clear benefit, it’s still worth considering how well
known the feature is to other engineers. This generally requires thinking about our
specific scenario and who will ultimately have to maintain the code.

Listing 5.31 Traditional Java code to filter a list

Listing 5.32 Filtering a list with a stream

135Summary
 If we’re in a team that maintains only a small amount of Java code, and none of the
other engineers are familiar with Java streams, then it might be best to avoid using
them. In this scenario, the code improvement we get from using them may be rela-
tively marginal compared to the confusion they might cause.

 In general, using a language feature when it improves code is a good idea. But, if
the improvement is small or there’s a chance others may not be familiar with the fea-
ture, it may still be best to avoid using it.

5.9.3 Use the best tool for the job

Java streams are incredibly versatile, and it’s possible to solve many problems with
them. This doesn’t, however, mean that they are always the best way to solve a prob-
lem. If we had a map and we needed to lookup a value in it, then the most sensible
code to do this would probably be

String value = map.get(key);

But we could also solve this by getting a stream of the map entries and filtering them
based on the key. Listing 5.33 shows what this might look like. Clearly this is not a par-
ticularly good way to get a value from a map. Not only is it a lot less readable than call-
ing map.get(), but it’s also a lot less efficient (because it potentially iterates over
every entry in the map).

Optional<String> value = map
 .entrySet()
 .stream()
 .filter(entry -> entry.getKey().equals(key))
 .map(Entry::getValue)
 .findFirst();

Listing 5.33 may look like some over-the-top example designed to prove a point, but
I’ve seen code that’s more or less identical to this in a real codebase before.

 New language features are often added for a reason and can bring great benefits,
but as with any code you write, make sure you’re using a feature because it’s the right
tool for the job and not just because it’s shiny or new.

Summary
 If code is not readable and easy to understand it can lead to problems such as

the following:

– Other engineers wasting time trying to decipher it
– Misunderstandings that lead to bugs being introduced
– Code being broken when other engineers need to modify it

 Making code more readable can sometimes lead to it becoming more verbose
and taking up more lines. This is often a worthwhile trade-off.

Listing 5.33 Getting a map value using a stream

136 CHAPTER 5 Make code readable
 Making code readable often requires being empathetic and imagining ways in
which others might find something confusing.

 Real-life scenarios are varied and usually present their own set of challenges.
Writing readable code nearly always requires an element of applying common
sense and using your judgment.

Avoid surprises
We saw in chapters 2 and 3 how code is often built up in layers, with code in higher
layers depending on code in lower ones. When we write code, it’s often just one
part of a much bigger codebase. We build on top of other pieces of code by
depending on them, and other engineers build on top of our code by depending
on it. For this to work, engineers need to be able to understand what code does and
how they should use it.

 Chapter 3 talked about code contracts as a way to think about how other engi-
neers go about understanding how to use a piece of code. In a code contract, things
like names, parameter types, and return types are unmistakably obvious, whereas
comments and documentation are more like small print and are often overlooked.

 Ultimately, an engineer will build a mental model of how to use a piece of code.
This will be based on what they notice in the code contract, any prior knowledge

This chapter covers
 How code can cause surprises

 How surprises can lead to bugs in software

 Ways to ensure that code does not cause
surprises
137

138 CHAPTER 6 Avoid surprises
they have, and common paradigms that they think might be applicable. If this mental
model doesn’t match the reality of what the code actually does, then it’s likely that a
nasty surprise might occur. In the best case this might just result in a bit of wasted
engineering time, but in the worst case it could result in a catastrophic bug.

 Avoiding surprises is often about being explicit. If a function sometimes returns
nothing or there is a special scenario that needs handling then we should make sure
other engineers are aware of this. If we don’t, then there is a risk that their mental
model of what they think the code does will not match the reality. This chapter
explores some common ways in which code can cause surprises and some techniques
for avoiding these.

6.1 Avoid returning magic values
A magic value is a value that fits into the normal return type of a function but which
has a special meaning. A very common example of a magic value is returning minus
one from a function to indicate that a value is absent (or that an error occurred).

 Because a magic value fits into the normal return type of a function, it can be easily
mistaken for a normal return value by any callers who are not aware of it and actively
vigilant. This section explains how this can cause surprises and how magic values can
be avoided.

6.1.1 Magic values can lead to bugs

Returning minus one from a function to indicate that a value is absent is a practice
you will no doubt come across from time to time. Some pieces of legacy code do it,
and even some built-in language features do it (such as calling indexOf() on an
array in JavaScript).

 In the past, there were some semi-sensible reasons for returning a magic value
(like minus one), because more explicit error-signaling techniques or returning a null
or an optional were not always available or practical to use. If we are working on some
legacy code or have some code that we need to carefully optimize, then some of these
reasons may still apply. But in general, returning a magic value carries a risk of causing
a surprise, so it’s often best to avoid using them.

 To demonstrate how a magic value can cause a bug, consider the code in the listing
6.1. It contains a class for storing information about a user. One of the pieces of infor-
mation stored in the class is the user’s age, and this can be accessed by calling the
getAge() function. The getAge() function returns a non-nullable integer, so an
engineer looking at this function signature is likely to assume that the age will always
be available.

class User {
 ...
 Int getAge() { ... }
}

Listing 6.1 User class and getAge() function

Returns the user’s age.
Never returns null.

139Avoid returning magic values
Now imagine that an engineer needs to calculate some statistics about all users of a
service. One of the statistics they need to calculate is the mean age of the users. They
write the code in listing 6.2 to do this. The code works by summing all the ages of
the users and then dividing this by the number of users. The code assumes that
user.getAge() always returns the user’s actual age. Nothing in the code looks obvi-
ously wrong, and the author and reviewer of this code would likely be satisfied that it
works.

Double? getMeanAge(List<User> users) {
 if (users.isEmpty()) {
 return null;
 }
 Double sumOfAges = 0.0;
 for (User user in users) {
 sumOfAges += user.getAge().toDouble();
 }
 return sumOfAges / users.size().toDouble();
}

In reality this code does not work and often returns an incorrect value for the mean
age because not all users have provided their age. When this is the case, the User
.getAge() function returns minus one. This is mentioned in the code’s small print,
but unfortunately the author of the getMeanAge() function did not realize this (as is
often the case with small print buried in a comment). If we take a more detailed look
at the User class, we see the code in listing 6.3. The fact that User.getAge() returns
minus one, without making callers explicitly aware of this, has caused a nasty surprise
for the author of the getMeanAge() function. getMeanAge() will return a plausible-
looking but incorrect value because some number of minus-one values will likely be
included when calculating the mean.

class User {
 private final Int? age;
 ...

 // Returns -1 if no age has been provided.
 Int getAge() {
 if (age == null) {
 return -1;
 }
 return age;
 }
}

This might seem like a kind of annoying but not very serious bug, but without knowing
exactly where and how this code is being called we can’t make that determination.

Listing 6.2 Calculating mean age of users

Listing 6.3 More detailed look at User class

Sums all the return
values of user.getAge()

The age may not
have been provided.

The small print (in a
comment) states that getAge()
can return minus one.

Returns minus one
if no age provided

140 CHAPTER 6 Avoid surprises
Imagine if a team compiling statistics for the company’s annual report to shareholders
reused the getMeanAge() function. The reported value of the mean age of users
might have a material impact on the company’s share price. If the reported value is
incorrect, then this could result in severe legal consequences.

 Another thing to note is that unit testing may not catch this issue. The author of
the getMeanAge() function is under the firm (but incorrect) belief that the user’s
age is always available. There’s a high chance that it would not occur to them to write
a unit test where the user’s age is absent because they’re not even aware that this is
something that the User class supports. Testing is great, but if we write code that can
cause a surprise, we are relying on someone else’s diligence to not fall into the trap we
have set. At some point this will not happen, and someone will fall into it.

6.1.2 Solution: Return null, an optional, or an error

Chapter 3 talked about code contracts and how they contain things that are unmis-
takably obvious in addition to things that are best described as small print. The prob-
lem with returning a magic value from a function is that it requires callers to know
the small print of the function’s contract. Some number of engineers will not read
this small print, or else read it but then forget it. When this happens a nasty surprise
can occur.

 If a value can be absent, it’s much better to make sure this is part of the unmistak-
ably obvious part of the code’s contract. One of the easiest ways to do this is to simply
return a nullable type if we have null-safety or to return an optional value if we do not.
This will ensure that callers are aware that the value might be absent, and they can
handle this in an appropriate way.

 Listing 6.4 shows the User class with the getAge() function modified to return
null if a value has not been provided. Null safety ensures that callers are aware of the
fact that getAge() can return null. If the language we are using doesn’t have null
safety, then returning Optional<Int> would achieve the same thing.

class User {
 private final Int? age;
 ...

 Int? getAge() {
 return age;
 }
}

The erroneous getMeanAge() function (repeated in listing 6.5) now causes a com-
piler error, which forces the engineer who wrote it to realize that there is a potential
bug in their code. In order to make the getMeanAge() code compile, the engineer
would have to handle the case where User.getAge() returns null.

Listing 6.4 getAge() modified to return null

The age may not have been provided
(the “?” means age is nullable).

The return type
is nullable.Returns null if

no age provided

141Avoid returning magic values

Double? getMeanAge(List<User> users) {
 if (users.isEmpty()) {
 return null;
 }
 Double sumOfAges = 0.0;
 for (User user in users) {
 sumOfAges += user.getAge().toDouble();
 }
 return sumOfAges / users.size().toDouble();
}

From a more organizational and product point of view, returning a nullable type
forces the engineer to realize that calculating the mean age of a set of users is not as
simple as they had initially thought. They can report this back to their manager or
product team, as the requirements may need to be refined based on this information.

 A downside of returning null (or an empty optional) is that it doesn’t convey any
explicit information about why the value is absent: is the user’s age null because they
didn’t provide a value or because some kind of error occurred in our system? If it’s
useful to differentiate these scenarios, then we should consider using one of the error
signaling techniques described in chapter 4.

6.1.3 Sometimes magic values can happen accidentally

Returning a magic value doesn’t always happen because an engineer deliberately
means to. It can happen when an engineer doesn’t think fully about all the inputs
their code might receive and what effect these can have.

Listing 6.5 Erroneous code doesn’t compile

Doesn’t a nullable return type put a burden on the caller?
The short answer to this is often “Yes it does.” If a function can return null, then call-
ers often have to write a small amount of extra code to handle the scenario where
the value is null. Some engineers cite this as a reason against returning null values
or optional types, but it’s worth considering what the alternative might be. If a value
can be absent and a function doesn’t make this sufficiently obvious to callers, then
there is a very real risk that we’ll end up with buggy code (as we just saw with calcu-
lating the mean age of users). In the medium to long term, the effort and expense
that goes into dealing with and fixing a bug like this can be orders of magnitude higher
than the cost of a few extra lines of code to handle a null return value correctly. Sec-
tion 6.2 discusses the null object pattern, which is sometimes used as an alterna-
tive to returning null. But as we’ll see, it can be problematic if used inappropriately.

Another reason sometimes cited against returning null is the risk of NullPointer-
Exceptions, NullReferenceExceptions, or similar. But as discussed in chap-
ter 2 (section 2.1) and in appendix B, the use of null safety or optional types generally
eliminates this risk.

Causes a compiler error because
getAge() can return null

142 CHAPTER 6 Avoid surprises
 To demonstrate this, listing 6.6 contains some code to find the minimum value
from a list of integers. The way that the function is implemented means that it returns
a magic value (Int.MAX_VALUE) if the input list is empty.

Int minValue(List<Int> values) {
 Int minValue = Int.MAX_VALUE;
 for (Int value in values) {
 minValue = Math.min(value, minValue);
 }
 return minValue;
}

We’d obviously have to ask the engineer who wrote the code, but returning Int.MAX_
VALUE might not be accidental. A couple of arguments the author of this might give
for why this is sensible are as follows:

 It should be obvious to callers that getting the minimum value of an empty list
makes no sense, so the value returned in this scenario doesn’t really matter.

 Int.MAX_VALUE is a sensible value to return, as no integer can be bigger than
it. This means that if it’s compared against any kind of threshold the code
would likely default to some sensible behavior.

The problem with these arguments is that they make assumptions about how the func-
tion will be called and how the result will be used. These assumptions could easily be
wrong, and if they are it will cause a surprise.

 Returning Int.MAX_VALUE might not result in some sensible default behavior. An
example of this would be using it as part of a maximin (maximum minimum) algo-
rithm. Imagine that we’re part of the engineering team for a game, and we want to
determine which level in the game is the easiest. We decide that for each level we will
find the minimum score any player achieved. Whichever level has the highest mini-
mum score will be considered the easiest.

 Listing 6.7 shows the code we might write. It makes use of the minValue() func-
tion we just saw. We run the code, and it outputs that level 14 is the easiest level. In
reality, level 14 is so difficult that no one has ever completed it. This means that no
scores have ever been recorded for it. When processing level 14, the minValue()
function is called with an empty list and thus returns Int.MAX_VALUE. This then
makes level 14 appear to be the runaway winner in terms of having the highest mini-
mum score. But as we just noted, the reality is that there are no scores recorded
because it’s so difficult that no one has ever completed it.

class GameLevel {
 ...
 List<Int> getAllScores() { ... }
}

Listing 6.6 Finding the minimum value

Listing 6.7 A maximin algorithm

If the values list is empty, then
Int.MAX_VALUE is returned.

Returns an empty list
if there are no scores

143Avoid returning magic values
GameLevel? getEasiestLevel(List<GameLevel> levels) {
 GameLevel? easiestLevel = null;
 Int? highestMinScore = null;
 for (GameLevel level in levels) {
 Int minScore = minValue(level.getAllScores());
 if (highestMinScore == null || minScore > highestMinScore) {
 easiestLevel = level;
 highestMinScore = minScore;
 }
 }
 return easiestLevel;
}

There are a couple of other ways in which Int.MAX_VALUE might be problematic:

 Int.MAX_VALUE is often specific to the programming language being used. If
the minValue() function lives inside a Java server, and the response is sent to a
client-side application written in JavaScript, then the significance of the value
will not be so obvious: Integer.MAX_VALUE (in Java) is a very different num-
ber to Number.MAX_SAFE_INTEGER (in JavaScript).

 If the output of the function were saved to a database, then it might cause a lot
of confusion and problems to anyone running queries or to other systems that
read the database.

It would be better to just return null, an empty optional, or signal some kind of error
from the minValue() function so that callers are aware that the value may not be cal-
culable for some inputs. If we go with returning null, this places an extra burden on the
caller because they have to write logic to handle it. But it removes another burden from
them: having to remember to check if the list is empty before calling minValue() and
running the risk of buggy code if they don’t. The following listing shows what the min-
Value() function might look like if it were to return null for an empty list.

Int? minValue(List<Int> values) {
 if (values.isEmpty()) {
 return null;
 }
 Int minValue = Int.MAX_VALUE;
 for (Int value in values) {
 minValue = Math.min(value, minValue);
 }
 return minValue;
}

Returning a magic value is sometimes a conscious decision made by an engineer, but
it can also sometimes happen by accident. Regardless of the reason, magic values can
easily cause surprises, so it’s good to be vigilant for scenarios where they can occur.
Returning null, optional, or using an error-signaling technique are simple and effec-
tive alternatives.

Listing 6.8 Returning a null for an empty list

Resolved to
Int.MAX_VALUE if
there are no scores

If a level has no scores,
then it’s returned.

If the values list is empty,
then null is returned.

144 CHAPTER 6 Avoid surprises
NOTE: USE AN APPROPRIATE LANGUAGE FEATURE The minValue() example is
used to demonstrate a general point about returning magic values. If we need
to find the minimum value in a list of integers, then there is likely a language
feature or existing utility that does this. If there is, then it’s probably better to
use that rather than hand rolling our own function.

6.2 Use the null object pattern appropriately
The null object pattern is an alternative to returning null (or an empty optional) when a
value can’t be obtained. The idea is that instead of returning null, a valid value is
returned that will cause any downstream logic to behave in an innocuous way. The
simplest forms of this are returning an empty string or an empty list, while more elab-
orate forms involve implementing a whole class where every member function either
does nothing or returns a default value.

 The null object pattern was mentioned briefly in chapter 4 when talking about
errors. Chapter 4 showed why it’s often a bad idea to use the null object pattern to
hide the fact that an error has occurred. Outside of error handling, the null object
pattern can be quite useful, but if used inappropriately it can cause nasty surprises and
subtle bugs that are hard to find.

 The examples in this section contrast the null object pattern with returning null. If
you’re using a language that doesn’t offer null safety, then an optional return type can
usually be used in place of a safe null.

6.2.1 Returning an empty collection can improve code

When a function returns a collection (such as a list, a set, or an array), it’s sometimes
possible that the values in the collection cannot be acquired. This may be because
they’ve not been set or may not be applicable in a given scenario. One approach
would be to return a null when this happens.

 Listing 6.9 shows some code to check if an HTML element is highlighted. It does
this by calling the getClassNames() function and checking if the “highlighted” class
is in the set of classes on the element. The getClassNames() function returns null if
the element doesn’t have a “class” attribute. This means that the isElementHigh-
lighted() function needs to check if the set of class names is null before using it.

Set<String>? getClassNames(HtmlElement element) {
 String? attribute = element.getAttribute("class");
 if (attribute == null) {
 return null;
 }
 return new Set(attribute.split(" "));
}
...

Boolean isElementHighlighted(HtmlElement element) {
 Set<String>? classNames = getClassNames(element);

Listing 6.9 Returning null

Returns null if no class
attribute on the element

145Use the null object pattern appropriately
 if (classNames == null) {
 return false;
 }
 return classNames.contains("highlighted");
}

Someone might argue that there is a benefit to the getClassNames() function
returning a nullable type: it distinguishes between the scenario of the “class” attribute
not having been set (null returned) and having been explicitly set to nothing (empty
set returned). But this is a subtle distinction, which in most cases is probably more
confusing than it is useful. The layer of abstraction being provided by the get-
ClassNames() function should also be aiming to hide these implementation details
about element attributes.

 Returning a nullable type also forces every caller of getClassNames() to check if
the returned value is null before using it. This adds more clutter to the code without
much benefit, because it’s very unlikely that any caller would care about distinguishing
between the class attribute not having been set and it having been set to an empty string.

 This is a scenario where the null object pattern can improve the code. The get-
ClassNames() function can instead return an empty set if there is no class attribute
on the element. This means that callers never have to handle a null value. Listing 6.10
shows the code modified to use the null object pattern by returning an empty set. The
isElementHighlighted() function is now considerably simpler and more succinct.

Set<String> getClassNames(HtmlElement element) {
 String? attribute = element.getAttribute("class");
 if (attribute == null) {
 return new Set();
 }
 return new Set(attribute.split(" "));
}
...

Boolean isElementHighlighted(HtmlElement element) {
 return getClassNames(element).contains("highlighted");
}

This is an example of the null object pattern improving code quality. It simplifies the
logic of callers and is very unlikely to cause a nasty surprise. But in more complicated
scenarios, the risk of causing a nasty surprise with the null object pattern can start to
outweigh the benefits. The following subsections explain why.

NOTE: NULL POINTER EXCEPTIONS A more old-school argument for using the
null object pattern is to minimize the chance of causing NullPointer-
Exceptions, NullReferenceExceptions, and alike. If using a language
with unsafe nulls, then returning null always carries a risk because callers may

Listing 6.10 Returning an empty set

Need to check if classNames
is null before using it

Returns an empty set if no
class attribute on the element

No need to check
for a null

146 CHAPTER 6 Avoid surprises
not bother to check for null before using a value. As long as we are using null
safety or optionals (if we don’t have null safety), this argument is largely obso-
lete. But it still has some relevance if we’re looking at legacy code that uses
unsafe nulls.

6.2.2 Returning an empty string can sometimes be problematic

The previous subsection showed how returning an empty collection instead of a null
can improve code quality. Some engineers advocate that this should also apply to
strings, whereby an empty string should be returned instead of a null. The appropri-
ateness of this depends on how a string is being used. In some cases a string is noth-
ing more than a collection of characters, and in this scenario returning an empty
string instead of a null might well be sensible. When a string has some meaning
beyond this, it starts to become less of a good idea. To demonstrate this, consider the
following scenarios.

A STRING AS A COLLECTION OF CHARACTERS

When a string is just a collection of characters and has no intrinsic meaning to the
code then using the null object pattern when the string is absent is generally fine. In
the case of a string, this means returning an empty string instead of returning null
when the value is not available. When a string has no intrinsic meaning, the distinc-
tion between it being null or an empty string is very unlikely to matter to any caller.

 Listing 6.11 demonstrates this with a function to access any free-form comments
entered by a user when providing feedback. It is very unlikely that there is any useful
distinction to be made between the user having not entered any comments and them
having explicitly entered an empty string. The function therefore returns an empty
string if no comments have been provided.

class UserFeedback {
 private String? additionalComments;
 ...

 String getAdditionalComments() {
 if (additionalComments == null) {
 return "";
 }
 return additionalComments;
 }
}

A STRING AS AN ID
A string is not always just a collection of characters. It can often have a specific meaning
that matters to the code in some way. A common example of this is when a string is used
as an ID. In this scenario, it can often be important to know if the string is absent, as this
may affect what logic needs to run. It’s therefore important to make sure that any callers
to a function are made explicitly aware that the string can be absent.

Listing 6.11 Returning an empty string

Returns an empty string
if no comments entered

147Use the null object pattern appropriately
 To demonstrate this, listing 6.12 shows a class to represent a payment. It contains a
nullable field called cardTransactionId. If the payment involved a card transac-
tion, then this field will contain an ID for that transaction. If the payment did not
involve a card transaction, then this field will be null. Clearly the card-

TransactionId string is not just a collection of characters: it has a specific meaning,
and it being null signifies something important.

 In this code example, the getCardTransactionId() function uses the null
object pattern by returning an empty string if cardTransactionId is null. This is
asking for trouble because engineers might see that the field is non-nullable and
assume that there is always a link to a card transaction. A business using this code
might end up with inaccurate accounting data when engineers fail to properly handle
scenarios where payments don’t involve card transactions.

class Payment {
 private final String? cardTransactionId;
 ...

 String getCardTransactionId() {
 if (cardTransactionId == null) {
 return "";
 }
 return cardTransactionId;
 }
}

It would be much better if the getCardTransactionId() function instead returned
null when cardTransactionId is null. This makes it clear to callers that the pay-
ment may not involve a card transaction and avoids surprises. If this were done, then
the code would instead look like the following listing.

class Payment {
 private final String? cardTransactionId;
 ...

 String? getCardTransactionId() {
 return cardTransactionId;
 }
}

6.2.3 More complicated null objects can cause surprises

Imagine you want to buy a new smartphone. You go to the electronics store and tell
the store assistant which model you’d like to buy. They sell you a sealed box that looks
exactly like it should contain a shiny new phone inside. You go home, unwrap the cel-
lophane, open the box, and find that there is nothing inside. This is surprising and

Listing 6.12 Returning an empty string for an ID

Listing 6.13 Returning null for an ID

cardTransactionId
can be null.

The function signature does not
indicate that the ID can be absent.

An empty string is returned
if cardTransactionId is null.

The function signature makes it
clear that the ID can be absent.

148 CHAPTER 6 Avoid surprises

n
annoying, and depending on why you need a new phone, this might have even worse
ramifications: you might now miss an important work call or message from a friend.

 In this scenario, the store had sold out of the phone you wanted. Instead of telling
you this and letting you either go to another store or pick a different model, the store
assistant kept quiet and sold you an empty box. If we’re not careful with how we use
the null object pattern, it can easily become analogous to this scenario. We are essen-
tially selling callers of our function an empty box. If there’s any chance that they will
be surprised or annoyed to receive an empty box, then it’s probably best to avoid the
null object pattern.

 A more complicated form of the null object pattern might involve constructing a
whole class with some supposedly innocuous values. Listing 6.14 contains two classes:
one to represent a coffee mug and one to represent an inventory of coffee mugs.
The CoffeeMugInventory class contains a function to get a random coffee mug
from the inventory. If there are no coffee mugs in the inventory, then it’s obviously
impossible to get a random one. When this happens the getRandomMug() function
constructs and returns a zero-size coffee mug instead of returning null. This is
another example of the null object pattern, but in this scenario it could very easily
cause surprises for callers. Anyone who calls getRandomMug() and receives what
looks like a mug will assume they have a valid mug from the inventory, when in fact
they may not.

class CoffeeMug {
 ...
 CoffeeMug(Double diameter, Double height) { ... }

 Double getDiameter() { ... }
 Double getHeight() { ... }
}

class CoffeeMugInventory {
 private final List<CoffeeMug> mugs;
 ...
 CoffeeMug getRandomMug() {
 if (mugs.isEmpty()) {
 return new CoffeeMug(diameter: 0.0, height: 0.0);
 }
 return mugs[Math.randomInt(0, mugs.size())];
 }
}

For some callers, getting a zero-size coffee mug might meet their needs, and it saves
them having to check for a null, but for other callers this might cause a serious bug
that would occur silently. Imagine if a consulting firm had been paid a large sum of
money to produce a report on the distribution of coffee mug sizes and they were
using this code. They might report severely incorrect findings due to all these zero-
size coffee mugs that appeared in their data set without anyone noticing.

Listing 6.14 A surprising null-object

CoffeeMug class

Constructs and returns a
zero-size coffee mug whe
no mugs are available

149Use the null object pattern appropriately
 The author of the code in listing 6.14 no doubt has good intentions; they’re trying
to make life easier for callers of the getRandomMug() function by not forcing them to
handle a null. But unfortunately this creates a situation that is potentially surprising,
because a caller to the function is given the false impression that they will always get a
valid CoffeeMug back.

 It would probably be better to simply return null from getRandomMug() when
there are no mugs from which to select a random one. This makes it unmistakably
obvious in the code’s contract that the function may not return a valid mug and leaves
no room for surprise when this does in fact happen. The following listing shows what
the getRandomMug() function looks like if it returns null.

CoffeeMug? getRandomMug(List<CoffeeMug> mugs) {
 if (mugs.isEmpty()) {
 return null;
 }
 return mugs[Math.randomInt(0, mugs.size())];
}

6.2.4 A null object implementation can cause surprises

Some engineers take the null object pattern a step further and define dedicated null
object implementations of interfaces or classes. One of the motivations for this can be
when an interface or class has some functions that do something rather than just those
that return something.

 Listing 6.16 contains an interface to represent a coffee mug along with two imple-
mentations: CoffeeMugImpl and NullCoffeeMug. NullCoffeeMug is a null object
implementation of CoffeeMug. It implements all the functions of the CoffeeMug
interface but returns zero when getDiameter() or getHeight() are called. In this
example CoffeeMug now also has a function that does something: reportMug-
Broken(). This can be used to update a record of which mugs are broken. The Null-
CoffeeMug implementation simply does nothing if this function is called.

interface CoffeeMug {
 Double getDiameter();
 Double getHeight();
 void reportMugBroken();
}

class CoffeeMugImpl implements CoffeeMug {
 ...
 override Double getDiameter() { return diameter; }
 override Double getHeight() { return height; }
 override void reportMugBroken() { ... }
}

Listing 6.15 Returning null

Listing 6.16 Null-object implementation

Returns null if a random coffee
mug cannot be acquired

CoffeeMug
interface

Normal implementation
of CoffeeMug

150 CHAPTER 6 Avoid surprises
class NullCoffeeMug implements CoffeeMug {
 override Double getDiameter() { return 0.0; }
 override Double getHeight() { return 0.0; }
 override void reportMugBroken() {
 // Do nothing
 }
}

Listing 6.17 demonstrates what the getRandomMug() function (which we previously
saw) looks like if it returns a NullCoffeeMug when there are no mugs. This achieves
more or less the same thing as the previous example that constructed and returned a
zero-size coffee mug. And it suffers from the same set of problems and can still easily
cause a surprise.

CoffeeMug getRandomMug(List<CoffeeMug> mugs) {
 if (mugs.isEmpty()) {
 return new NullCoffeeMug();
 }
 return mugs[Math.randomInt(0, mugs.size())];
}

One slight improvement with returning a NullCoffeeMug is that callers can now
check if they have a null object by checking if the return value is an instance of Null-
CoffeeMug. This is not much of an improvement though, as it’s not at all clear to call-
ers that they might want to check this. Even if the caller is aware, requiring them to
check if a value is an instance of NullCoffeeMug is kind of clunky and probably
worse than just checking for a null (which is a much more common and less surpris-
ing paradigm).

 The null object pattern can manifest in many forms. It’s worth consciously recog-
nizing when we use it or encounter it and thinking about whether it’s really appropriate
or likely to cause surprises. The rise in popularity of null safety and optionals has made
it a lot easier and safer to explicitly signal that a value is absent. And with this, many of
the original arguments for using the null object pattern are less compelling these days.

6.3 Avoid causing unexpected side effects
A side effect is any state that a function modifies outside of itself when called. If a func-
tion has any effects other than just via the value it returns, then it has side effects.
Common types of side effects are the following:

 Displaying an output to the user
 Saving something to a file or database
 Causing some network traffic by calling another system
 Updating or invalidating a cache

Listing 6.17 Returning NullCoffeeMug

Null object implementation
of CoffeeMug

Functions that should return
something return zero.

Functions that should do
something instead do nothing.

Returns NullCoffeeMug if a random
coffee mug cannot be acquired

151Avoid causing unexpected side effects
Side effects are an inevitable part of writing software. A piece of software with no side
effects would likely be pointless: at some point it needs to output something to a user,
database, or another system. This means that at least some parts of the code need to
have side effects. When a side effect is expected and what a caller to a piece of code
wants, then it is fine, but when a side effect is unexpected, it can cause a surprise and
lead to bugs.

 One of the best ways to avoid causing an unexpected side effect is to not cause a
side effect in the first place. The examples in this section and section 6.4 will discuss
this. But making classes immutable is also a great way to minimize the potential for
side effects, and this will be covered in chapter 7. For the cases where a side effect is
part of the desired functionality or cannot be avoided, it’s important to make sure call-
ers know about it.

6.3.1 Side effects that are obvious and intentional are fine

As was just mentioned, side effects are often required at some point in a piece of code.
Listing 6.18 shows a class for managing a user display. The displayErrorMessage()
function causes a side effect: it updates the canvas that is displayed to the user. But
given that the class is called UserDisplay and the function is called display-
ErrorMessage(), it’s completely obvious that this will cause this side effect. There is
no room for surprise.

class UserDisplay {
 private final Canvas canvas;
 ...

 void displayErrorMessage(String message) {
 canvas.drawText(message, Color.RED);
 }
}

The displayErrorMessage() function is an example of causing an obvious and
intentional side effect. Updating the canvas with an error message is the exact thing
that a caller wants, and expects, to happen. Functions with side effects that a caller
would not necessarily expect or want, on the other hand, can be problematic. The fol-
lowing subsections discuss this.

6.3.2 Unexpected side effects can be problematic

When the purpose of a function is to get or read a value, other engineers will gener-
ally assume that it won’t cause a side effect. Listing 6.19 shows a function to get the
color at a particular pixel in a user display. This seems like the kind of thing that
should be relatively straightforward and not have any side effects. Unfortunately this is
not the case; before reading the pixel color, the getPixel() function causes a

Listing 6.18 An expected side-effect

Side effect: canvas
is updated.

152 CHAPTER 6 Avoid surprises
redraw event on the canvas. This is a side effect, and for anyone not familiar with the
implementation of the getPixel() function it will be unexpected.

class UserDisplay {
 private final Canvas canvas;
 ...

 Color getPixel(Int x, Int y) {
 canvas.redraw();
 PixelData data = canvas.getPixel(x, y);
 return new Color(
 data.getRed(),
 data.getGreen(),
 data.getBlue());
 }
}

There are a few ways in which an unexpected side effect like this can be problematic.
The next few subsections will explore some of these.

SIDE EFFECTS CAN BE EXPENSIVE

Calling canvas.redraw() is potentially quite an expensive operation and may also
cause the display to flicker for the user. An engineer calling getPixel() would likely
not expect it to be an expensive operation or cause a user-visible issue: nothing about
the getPixel() function’s name suggests this. But if it is expensive and can cause a
flicker, then it could cause some quite nasty functionality that most users would inter-
pret as a horrible bug.

 Imagine if a feature were added to the application to allow a user to take a screen-
shot of the display. Listing 6.20 shows how this might be implemented. The capture-
Screenshot() function reads pixels one by one by calling the getPixel() function.
This causes canvas.redraw() to be called for every single pixel in the screenshot.
Let’s say a single redraw event takes 10 milliseconds and the user display is 400 x 700
pixels (or 280,000 pixels in total). Capturing a screenshot will cause the application to
freeze and flicker for 47 minutes. Nearly every user would interpret this as the applica-
tion having crashed and would likely restart it, potentially losing unsaved work.

class UserDisplay {
 private final Canvas canvas;
 ...
 Color getPixel(Int x, Int y) { ... }
 ...

 Image captureScreenshot() {
 Image image = new Image(
 canvas.getWidth(), canvas.getHeight());

Listing 6.19 An unexpected side effect

Listing 6.20 Capturing a screenshot

Triggering a redraw
event is a side effect.

Takes approximately 10 ms
to run due to the side effect

153Avoid causing unexpected side effects
 for (Int x = 0; x < image.getWidth(); ++x) {
 for (Int y = 0; y < image.getHeight(); ++y) {
 image.setPixel(x, y, getPixel(x, y));
 }
 }
 return image;
 }
}

BREAKING AN ASSUMPTION THE CALLER HAS MADE

Even if redrawing the canvas is cheap, a function with the name captureScreen-
shot() doesn’t sound like it will cause a side effect, so most engineers calling it will
probably assume that it doesn’t. The fact that this assumption is wrong could poten-
tially cause a bug.

 Listing 6.21 shows a function to capture a redacted screenshot. This deletes any
regions of the canvas that contain the user’s personal information and then calls
captureScreenshot(). The function is used to capture an anonymized screenshot
whenever a user gives feedback or files a bug report. Deleting areas of the canvas will
clear those pixels until the next call to canvas.redraw().

 The author of the captureRedactedScreenshot() function has assumed that
canvas.redraw() will not be called by captureScreenshot(). Unfortunately this
assumption is wrong, because captureScreenshot() calls getPixel(), which in
turn calls canvas.redraw(). This means that the redaction functionality is com-
pletely broken and personal information will be sent in feedback reports. This is a
serious breach of user privacy and a severe bug.

class UserDisplay {
 private final Canvas canvas;
 ...

 Color getPixel(Int x, Int y) { ... }

 Image captureScreenshot() { ... }

 List<Box> getPrivacySensitiveAreas() { ... }

 Image captureRedactedScreenshot() {
 for (Box area in getPrivacySensitiveAreas()) {
 canvas.delete(
 area.getX(), area.getY(),
 area.getWidth(), area.getHeight());
 }
 Image screenshot = captureScreenshot();
 canvas.redraw();
 return screenshot;
 }
}

Listing 6.21 Capturing a redacted screenshot

getPixel() is called
many times.

Causes a side effect by
calling canvas.redraw()

Indirectly causes a side
effect by calling getPixel()

Returns any areas of the canvas
containing personal user information

Deletes any pixels containing
personal user information

Screenshot
is captured

Intentional clean-up: the only
place that the author thinks
canvas.redraw() is being called

154 CHAPTER 6 Avoid surprises
BUGS IN MULTITHREADED CODE

If a program needs to perform multiple tasks relatively independently of one another,
a common way of achieving this is to run each task in its own thread. The computer can
then quickly switch back and forth between the tasks by repeatedly preempting and
resuming threads in turns. This is known as multithreading. Because different threads
can often have access to the same data, a side effect caused by one thread can some-
times cause problems for another thread.

 Imagine that another piece of functionality in the application allows a user to live-
share their screen with a friend. This might be implemented by having another thread
that periodically captures a screenshot and sends this to the friend. If more than one
thread calls captureScreenshot() at the same time, then the screenshots may be
broken because one thread might be redrawing the canvas while the other thread is
trying to read it. Figure 6.1 illustrates this by showing how two calls to getPixel()
from two separate threads might interact.

Figure 6.1 Code with side effects can often be problematic if it’s ever run in a multithreaded
environment and the author has not taken active steps to make it thread safe (such as using a lock).

Thread 1 Thread 2

getPixel(x, y)

canvas.redraw();

Thread 1 preempted

Thread 1 resumed

PixelData data =
 canvas.getPixel(x, y);
return new Color(
 data.getRed(),
 data.getGreen(),
 data.getBlue());

getPixel(x, y)

canvas.redraw();

Thread 2 resumed

//startRedrawingCanvas

//finishRedrawingCanvas

Thread 2 preempted

Thread 2 resumedThread 1 preempted

Thread 1 reads pixel data from the canvas
while thread 2 is in the middle of redrawing
the canvas. The pixel data is likely incorrect.

155Avoid causing unexpected side effects
The chance of a multithreading issue occurring on an individual call to a function is
usually quite low. But when a function is being called thousands (or even millions) of
times, the cumulative chance of it happening becomes quite high. Bugs related to
multithreading issues are also notoriously hard to debug and test for.

 An engineer who sees a function named captureScreenshot() or getPixel(),
will not expect either of them to have side effects that might break code running in
another thread. Writing code that doesn’t behave well in a multithreaded environ-
ment can introduce a particularly nasty set of surprises. Debugging and resolving
them can waste a lot of engineers’ time. It’s much better to either avoid side effects or
else make them obvious.

6.3.3 Solution: Avoid a side effect or make it obvious

The first question that we should ask is whether calling canvas.redraw() before
reading a pixel is necessary. This might just be some overly cautious code that hasn’t
been properly thought through. And not having a side effect in the first place is the
best way to avoid causing surprises. If the call to canvas.redraw() is not needed,
then we should just remove, it meaning the problems go away.

 If calling canvas.redraw() before reading a pixel is necessary, then the get-
Pixel() function should be renamed to make this side effect obvious. A better name
would be something like redrawAndGetPixel(), so that it’s unmistakably obvious
that this function has the side effect of causing a redraw event. The following listing
shows this.

class UserDisplay {
 private final Canvas canvas;
 ...

 Color redrawAndGetPixel(Int x, Int y) {
 canvas.redraw();
 PixelData data = canvas.getPixel(x, y);
 return new Color(
 data.getRed(),
 data.getGreen(),
 data.getBlue());
 }
}

This is a very simple change to make and emphasizes the power of naming things well.
An engineer calling the redrawAndGetPixel() function is now forced to notice that
it has a side effect and will cause a redraw event. This goes a long way toward solving
the three issues we saw in the previous subsection:

 A redraw sounds like the kind of thing that might be expensive, so the author of
the captureScreenshot() function would probably think twice before call-
ing redrawAndGetPixel() thousands of times inside a for-loop. This alerts

Listing 6.22 A more informative name

Function name makes
side effect obvious

156 CHAPTER 6 Avoid surprises
them that they probably want to implement their function in a different way,
such as performing a single redraw and then reading all the pixels in one go.

 If the author of the captureScreenshot() function also named it to make
the side effect obvious, then they might name it something like redrawAnd-
CaptureScreenshot(). It’s now quite hard for an engineer to make the erro-
neous assumption that this doesn’t cause a redraw event, since the name of the
function directly contradicts this.

 If a function is called redrawAndCaptureScreenshot(), then the engineer
implementing the screen-sharing feature would immediately be aware of the
dangers of calling it from a multithreaded environment. They would obviously
have to do some work to make it safe (like using a lock), but this is much better
than them being oblivious to this fact and it causing a nasty surprise.

Most functions that get a piece of information don’t cause side effects, so an engineer’s
natural mental model is to assume that such a function will not cause one. The onus is
therefore on the author of a function that causes a side effect to make this fact unmis-
takably obvious to any callers. Not causing a side effect in the first place is the best way
to avoid a surprise, but this is not always practical. When a side effect is unavoidable,
naming things appropriately can be a very effective way to make it obvious.

6.4 Beware of mutating input parameters
The previous section discussed how unexpected side effects can be problematic. This
section discusses a specific type of side effect: a function mutating an input parameter.
This can be a particularly common source of surprises and bugs and is thus worthy of
a section in its own right.

6.4.1 Mutating an input parameter can lead to bugs

If you lend a book to a friend and they return it with some pages ripped out and notes
scribbled all over the margins, you’ll probably be quite annoyed. You might be intend-
ing to read the book yourself or lend it to another friend, and you’ll have a nasty sur-
prise when you eventually realize that the book has been vandalized. A friend who rips
pages out and scribbles over the margins of a book that you lend to them is probably a
bad friend.

 Passing an object to another function as an input is a bit like lending a book to a
friend. There’s some information within that object that the other function needs, but
it’s also quite likely that the object might still be needed for other things after this func-
tion call. If a function modifies an input parameter there’s a real risk that it’s doing the
code equivalent of ripping pages out and scribbling over the margins. Callers will gen-
erally pass the function an object on the understanding that the object is being bor-
rowed. If the function vandalizes the object in the process, it’s a bit like a bad friend.

 Modifying (or mutating) an input parameter is another example of a side effect
because the function is affecting something outside of itself. It’s conventional for func-
tions to take (or borrow) inputs via parameters and provide results via return values. To

157Beware of mutating input parameters
most engineers, mutating an input parameter is therefore an unexpected side effect
and is likely to cause a surprise.

 Listing 6.23 demonstrates how mutating an input parameter can lead to surprises
and bugs. The listing shows some code to process orders for a company selling online
services. The company offers a free trial to new users. The processOrders() func-
tion does two things: sends out billable invoices and then enables the ordered services
for each user.

 The getBillableInvoices() function determines which invoices are billable.
An invoice is billable if the user does not have a free trial. Unfortunately, in calculat-
ing this, getBillableInvoices() mutates one of its input parameters (the user-
Invoices map) by removing all entries for users with a free trial. This causes a bug in
the code, because processOrders() later reuses the userInvoices map to enable
the services users have ordered. This means that no services are enabled for any users
with a free trial.

List<Invoice> getBillableInvoices(
 Map<User, Invoice> userInvoices,
 Set<User> usersWithFreeTrial) {
 userInvoices.removeAll(usersWithFreeTrial);
 return userInvoices.values();
}

void processOrders(OrderBatch orderBatch) {
 Map<User, Invoice> userInvoices =
 orderBatch.getUserInvoices();
 Set<User> usersWithFreeTrial =
 orderBatch.getFreeTrialUsers();

 sendInvoices(
 getBillableInvoices(userInvoices, usersWithFreeTrial));
 enableOrderedServices(userInvoices);
}

void enableOrderedServices(Map<User, Invoice> userInvoices) {
 ...
}

This bug stems from the fact that the getBillableInvoices() function mutates
the map of user invoices (a bit like a bad friend ripping pages out of a borrowed
book). It would be much better if this function were changed so that it did not modify
the input parameter.

6.4.2 Solution: Copy things before mutating them

If a set of values contained within an input parameter really need to be mutated, then
it’s often best to copy them into a new data structure before performing any muta-
tions. This prevents the original object from being changed. The following listing
shows what the getBillableInvoices() function would look like if it did this.

Listing 6.23 Mutating an input parameter

Mutates userInvoices by
removing all entries for
users with a free trial

getBillableInvoices()
unexpectedly mutates

userInvoices.

Services will not be enabled
for users with a free trial.

158 CHAPTER 6 Avoid surprises

List<Invoice> getBillableInvoices(
 Map<User, Invoice> userInvoices,
 Set<User> usersWithFreeTrial) {
 return userInvoices
 .entries()
 .filter(entry ->
 !usersWithFreeTrial.contains(entry.getKey()))
 .map(entry -> entry.getValue());
}

Copying values can obviously affect the performance of code (in terms of memory
usage, CPU usage, or both). This is often the lesser of two evils when compared to the
surprises and bugs that can result from mutating an input parameter. But if a piece of
code is likely to handle very large amounts of data or is likely to run on low-end hard-
ware, then mutating an input parameter may become a necessary evil. A common
example of this is sorting a list or an array. The number of values could potentially be
quite large, and it can be a lot more efficient to sort it in place rather than create a
copy. If we do need to mutate an input parameter for a performance reason like this,
then it’s good to make sure that our function name (and any documentation) make it
clear that this will happen.

NOTE: MUTATING PARAMETERS IS SOMETIMES COMMON In some languages and
codebases, mutating parameters to a function can be quite commonplace. In
C++, a lot of code utilizes the concept of output parameters, as returning
class-like objects from functions in an efficient and safe manner used to be
tricky. C++ now has features that make output parameters less commonplace
in new code (such as the move semantic). Just be aware that in some lan-
guages mutating a parameter is more expected than in others.

NOTE: BEING DEFENSIVE This section talked about making sure that the code
we write behaves nicely and doesn’t “vandalize” objects that belong to other
code. The flip side of this is defending objects that our code owns against
other code vandalizing them. Chapter 7 will discuss making objects
immutable, which can be an effective way to achieve this.

6.5 Avoid writing misleading functions
When an engineer encounters some code that calls a function, they will form an idea
of what is happening based on what they see. The unmistakably obvious parts of the
code contract (such as names) will often be the main things an engineer notices when
glancing at some code.

 As we’ve already seen in this chapter, if things are missing from the unmistakably
obvious parts of the code contract, it can cause surprises. What can be even worse,
however, is if the unmistakably obvious parts of the code contract are actively mislead-
ing. If we see a function named displayLegalDisclaimer()we will assume that
calling it will display a legal disclaimer. If that’s not always the case, it can easily lead to
surprising behavior and bugs.

Listing 6.24 Not mutating an input parameter

Gets a list of all key–
value pairs in the
userInvoices map

filter() copies any values
matching the condition
into a new list.

159Avoid writing misleading functions
6.5.1 Doing nothing when a critical input is missing can cause surprises

A function can be misleading about what it does if it allows itself to be called with an
absent parameter and then does nothing when that parameter is absent. Callers may
not be aware of the significance of calling the function without providing a value for
that parameter, and anyone reading the code may be misled into thinking that the
function call always does something.

 Listing 6.25 shows some code to show a legal disclaimer in a user display. The
displayLegalDisclaimer() function takes some legal text as a parameter and dis-
plays this in an overlay. The legalText parameter can be null, and when it is, the
displayLegalDisclaimer() function returns without displaying anything to the
user.

class UserDisplay {
 private final LocalizedMessages messages;
 ...

 void displayLegalDisclaimer(String? legalText) {
 if (legalText == null) {
 return;
 }
 displayOverlay(
 title: messages.getLegalDisclaimerTitle(),
 message: legalText,
 textColor: Color.RED);
 }
}

class LocalizedMessages {
 ...
 String getLegalDisclaimerTitle();
 ...
}

Listing 6.25 Nullable but critical parameter

Why accept null and then do nothing?
You may wonder why anyone would write a function like the one in listing 6.25. The
answer is that engineers sometimes do this to avoid callers having to check for a null
before calling a function (as demonstrated in the following snippet). Their intentions
are good: they are trying to unburden callers, but unfortunately it can result in mis-
leading and surprising code.

...
 String? message = getMessage();
 if (message != null) {
 userDisplay.displayLegalDisclaimer(message);
 }
...

legalText can
be null.

When legalText is null, the function
returns without displaying anything.

Contains messages translated into
the user’s local language

If the displayLegalDisclaimer()
function doesn’t accept a null, then
callers must check for a null.

160 CHAPTER 6 Avoid surprises
To understand why code like this can cause surprises, it’s necessary to think about what
the code will look like when the displayLegalDisclaimer() function is called.
Imagine that a company is implementing a user signup flow for a service. There are a
couple of very important requirements that the code for this needs to fulfill:

 Before a user can sign up, the company is legally obliged to show them a legal
disclaimer in their local language.

 If a legal disclaimer cannot be displayed in the user’s local language, then the
signup should be aborted. Continuing would potentially break the law.

We’ll look at the full implementation in a moment, but first let’s concentrate on the
function that is meant to ensure these requirements are met: ensureLegal-
Compliance() (shown in the following snippet). An engineer reading this code
would likely conclude that a legal disclaimer is always displayed. This is because user-
Display.displayLegalDisclaimer() is always called and nothing in the unmis-
takably obvious part of its contract suggests that it sometimes does nothing.

void ensureLegalCompliance() {
 userDisplay.displayLegalDisclaimer(
 messages.getSignupDisclaimer());
}

Unlike most engineers reading this code, we happen to be familiar with the imple-
mentation details of userDisplay.displayLegalDisclaimer() because we saw
them earlier (in listing 6.25), so we know that if it’s called with a null value it will do
nothing. Listing 6.26 shows the full implementation of the signup flow logic. We can
now see that messages.getSignupDisclaimer() can sometimes return null. This
means that, in fact, the ensureLegalCompliance() function will not always ensure
that all legal requirements have been met. The company using this code might well be
breaking the law.

class SignupFlow {
 private final UserDisplay userDisplay;
 private final LocalizedMessages messages;
 ...

 void ensureLegalCompliance() {
 userDisplay.displayLegalDisclaimer(
 messages.getSignupDisclaimer());
 }
}

class LocalizedMessages {
 ...
 // Returns null if no translation is available in the
 // user's language, because using a default language
 // for specific legal text may not be compliant.

Listing 6.26 Misleading code

Code appears to always display the
disclaimer. In reality it does not.

161Avoid writing misleading functions
 String? getSignupDisclaimer() { ... }
 ...
}

A big part of the problem here is that the UserDisplay.displayLegal-
Disclaimer() function accepts a nullable value and then does nothing when it is
null. Anyone reading a piece of code that calls displayLegalDisclaimer() will
think, “Oh great, the disclaimer is definitely displayed.” In reality they’d have to know
that it’s not being called with a null value for that to be true. The next subsection
explains how we can avoid a potential surprise like this.

6.5.2 Solution: Make critical inputs required

Making a critical parameter nullable means that callers don’t have to check for a null
value before calling. This can make the caller’s code more succinct, but unfortunately
it can also make the caller’s code misleading. This is generally not a good trade-off:
the caller’s code becomes slightly shorter, but in the process the potential for confu-
sion and bugs is greatly increased.

 A parameter is critical to a function if the function can’t do what it says it does with-
out that parameter. If we have such a parameter, it can often be safer to make it
required so that it’s impossible to call the function if the value is not available.

 Listing 6.27 shows the displayLegalDisclaimer() function modified so that it
only accepts a non-null parameter. A call to displayLegalDisclaimer() is now
guaranteed to display a legal disclaimer. Any callers of displayLegalDisclaimer()
are forced to confront the fact that if they don’t have any legal text, they can’t display
a disclaimer.

class UserDisplay {
 private final LocalizedMessages messages;
 ...

 void displayLegalDisclaimer(String legalText) {
 displayOverlay(
 title: messages.getLegalDisclaimerTitle(),
 message: legalText,
 textColor: Color.RED);
 }
}

The code in the ensureLegalCompliance() function is now forced to be a lot less
misleading. The author of the code will realize that they have to handle the scenario
where there is no translation. Listing 6.28 shows how the code for the ensureLegal-
Compliance() function might now look. It has to now check if the localized legal
text is available, and if it is not it signals that compliance could not be ensured by
returning false. The function is also annotated with @CheckReturnValue to ensure
that the return value is not ignored (as covered in chapter 4).

Listing 6.27 Required critical parameter

Returns null if no translation
available in the user’s language

legalText
cannot be null.

A disclaimer will
always be displayed.

162 CHAPTER 6 Avoid surprises

R
if

was n
s

class SignupFlow {
 private final UserDisplay userDisplay;
 private final LocalizedMessages messages;
 ...

 // Returns false if compliance could not be ensured
 // meaning that signup should be abandoned. Returns true
 // if compliance has been ensured.
 @CheckReturnValue
 Boolean ensureLegalCompliance() {
 String? signupDisclaimer = messages.getSignupDisclaimer();
 if (signupDisclaimer == null) {
 return false;
 }
 userDisplay.displayLegalDisclaimer(signupDisclaimer);
 return true;
 }
}

Chapter 5 talked about why it’s important not to fixate on the total number of lines of
code at the expense of other aspects of code quality. Moving an if-null statement to
the caller can increase the number of lines of code (especially if there are many call-
ers), but it also reduces the chance of the code being misinterpreted or doing some-
thing surprising. The time and effort spent fixing even a single bug caused by some
surprising code will likely be orders of magnitude higher than the time spent reading
a few extra if-null statements. The benefits of code clarity and being unambiguous
often far outweigh the costs of a few extra lines of code.

6.6 Future-proof enum handling
The examples so far in this chapter have concentrated on ensuring that callers of our
code are not surprised by something it does or returns, in other words ensuring that
code which depends on our code is correct and bug free. However, surprises can also
occur if we make brittle assumptions about code that we depend on. This section
demonstrates an example of this.

 Enums cause some amount of disagreement among software engineers. Some
argue that they are a great, simple way to provide type safety and avoid invalid inputs
to functions or systems. Others argue that they prevent clean layers of abstraction
because the logic for how to handle a specific enum value ends up being spread all
over the place. Engineers in this latter group often argue that polymorphism is a bet-
ter approach: encapsulate information and behaviors for each value inside a class ded-
icated to that value and then have all these classes implement a common interface.

 Regardless of your personal opinions about enums, the likelihood is that you will
come across them and have to handle them at some point. This might be because

 you have to consume the output of someone else’s code and they really love
enums for whatever reason, or

Listing 6.28 Unambiguous code

Ensures that the return
value is not ignored

Returns a Boolean to
indicate if compliance
was ensured

eturns false
 compliance
ot ensured A call to displayLegal-

Disclaimer() will alway
display a disclaimer.

163Future-proof enum handling
 you are consuming the output provided by another system. Enums can often be
the only practical option in an over-the-wire data format.

When you do have to handle an enum, it’s often important to remember that more
values may be added to the enum in the future. If you write code that ignores this fact,
then you may cause some nasty surprises for yourself or other engineers.

6.6.1 Implicitly handling future enum values can be problematic

Sometimes engineers look at the current set of values within an enum and think, “Oh
great, I can handle that with an if-statement.” This might work for the set of values
that the enum currently has, but it’s often not robust to more values being added in
the future.

 To demonstrate this, imagine a company has developed a model to predict what
will happen if it pursues a given business strategy. Listing 6.29 contains the definition
of the enum that indicates the prediction from the model. The listing also contains a
function that consumes a model prediction and then indicates if it’s a safe outcome.
If isOutcomeSafe() returns true, then an automated system downstream of this
will initiate the business strategy. If it returns false the business strategy will not be
initiated.

 Currently the PredictedOutcome enum contains only two values: COMPANY_
WILL_GO_BUST and COMPANY_WILL_MAKE_A_PROFIT. The engineer writing the
isOutcomeSafe() function has noticed that one of these outcomes is safe and the
other is not and has thus decided to handle the enum using a simple if-statement.
isOutcomeSafe() explicitly handles the COMPANY_WILL_GO_BUST case as not safe
and implicitly handles all other enum values as being safe.

enum PredictedOutcome {
 COMPANY_WILL_GO_BUST,
 COMPANY_WILL_MAKE_A_PROFIT,
}

...

Boolean isOutcomeSafe(PredictedOutcome prediction) {
 if (prediction == PredictedOutcome.COMPANY_WILL_GO_BUST) {
 return false;
 }
 return true;
}

The code in the previous listing works while there are only the two enum values. But
things could go horribly wrong if someone were to introduce a new enum value. Imag-
ine that the model and enum are now updated with a new potential outcome:
WORLD_WILL_END. As the name suggests, this enum value indicates that the model

Listing 6.29 Implicit handling of enum values

Two enum values

COMPANY_WILL_GO_BUST
explicitly handled as not safe

All other enum values
implicitly handled as safe

164 CHAPTER 6 Avoid surprises
predicts that the entire world will end if the company initiates the given business strat-
egy. The enum definition now looks like the following listing.

enum PredictedOutcome {
 COMPANY_WILL_GO_BUST,
 COMPANY_WILL_MAKE_A_PROFIT,
 WORLD_WILL_END,
}

The isOutcomeSafe() function definition could be many hundreds of lines of code
away from the enum definition or be in a completely different file or package. They
may also be maintained by completely different teams. It’s therefore not safe to
assume that any engineer adding an enum value to PredictedOutcome would be
aware of the need to also update the isOutcomeSafe() function.

 If the isOutcomeSafe() function (repeated again in the following snippet) is not
updated it will return true for the WORLD_WILL_END prediction, indicating that it’s a
safe outcome. Obviously WORLD_WILL_END is not a safe outcome, and it would be
disastrous if the downstream system initiated any business strategy with this predicted
outcome.

Boolean isOutcomeSafe(PredictedOutcome prediction) {
 if (prediction == PredictedOutcome.COMPANY_WILL_GO_BUST) {
 return false;
 }
 return true;
}

The author of the isOutcomeSafe() function has ignored the fact that more enum
values might be added in the future. As a result the code contains a brittle and unreli-
able assumption that could lead to a catastrophic outcome. It’s unlikely that a real sce-
nario would result in the world ending, but the consequences for an organization
could still be severe if customer data were mismanaged or the wrong automated deci-
sions were made.

6.6.2 Solution: Use an exhaustive switch statement

The problem with the code in the previous subsection is that the isOutcomeSafe()
function is implicitly handling some enum values instead of doing it explicitly. A better
approach would be to handle all known enum values explicitly and then ensure that
either the code stops compiling or a test fails if a new unhandled enum value is added.

 A common way to achieve this is using an exhaustive switch statement. Listing 6.31
shows what the isOutcomeSafe() function looks like if it uses this approach. If the
switch statement ever completes without one of the cases matching, this indicates that
an unhandled enum value has been encountered. If this happens, it means that there
is a programming error: an engineer has failed to update the code in the isOut-
comeSafe() function to handle the new enum value. This is signaled by throwing an

Listing 6.30 A new enum value

Value indicating that the
world is predicted to end

Returns true if prediction
is WORLD_WILL_END

165Future-proof enum handling
unchecked exception to ensure that the code fails fast and fails loudly (as discussed in
chapter 4).

enum PredictedOutcome {
 COMPANY_WILL_GO_BUST,
 COMPANY_WILL_MAKE_A_PROFIT,
}

...

Boolean isOutcomeSafe(PredictedOutcome prediction) {
 switch (prediction) {
 case COMPANY_WILL_GO_BUST:
 return false;
 case COMPANY_WILL_MAKE_A_PROFIT:
 return true;
 }
 throw new UncheckedException(
 "Unhandled prediction: " + prediction);
}

This can be combined with a unit test that performs a call to the function with each
potential enum value. If an exception is thrown for any value, then the test will fail,
and an engineer adding a new value to PredictedOutcome will be made aware of the
need to update the isOutcomeSafe() function. The following listing shows what this
unit test might look like.

testIsOutcomeSafe_allPredictedOutcomeValues() {
 for (PredictedOutcome prediction in
 PredictedOutcome.values()) {
 isOutcomeSafe(prediction);
 }
}

Assuming that the PredictedOutcome enum definition and the isOutcomeSafe()
function are part of the same codebase and that there are sufficient presubmit checks,
the engineer is prevented from submitting their code until they update the
isOutcomeSafe() function. This forces the engineer to notice the problem, and
they will update the function to explicitly handle the WORLD_WILL_END value. The
following listing shows the updated code.

Boolean isOutcomeSafe(PredictedOutcome prediction) {
 switch (prediction) {
 case COMPANY_WILL_GO_BUST:

Listing 6.31 An exhaustive switch statement

Listing 6.32 Unit testing all enum values

Listing 6.33 Handling the new enum

Each enum value is
explicitly handled.

An unhandled enum value is a
programming error, so an
unchecked exception is thrown.

Iterates through every
value in the enum

If an exception is thrown due to an
unhandled value, the test will fail.

166 CHAPTER 6 Avoid surprises
 case WORLD_WILL_END:
 return false;
 case COMPANY_WILL_MAKE_A_PROFIT:
 return true;
 }
 throw new UncheckedException(
 "Unhandled prediction: " + prediction);
}

With the updated code, the testIsOutcomeSafe_allPredictedOutcome-

Values() test passes again. If the engineer is doing their job properly, then they will
also add an additional test case to ensure the isOutcomeSafe() function returns
false for the WORLD_WILL_END prediction.

 By using an exhaustive switch statement in combination with a unit test, a nasty sur-
prise and a potentially catastrophic bug in the code have been avoided.

NOTE: COMPILE-TIME SAFETY In some languages (e.g., C++), the compiler can
produce a warning for a switch statement that doesn't exhaustively handle
every enum value. If your team’s build setup is configured so that warnings
are treated as errors, then this can be a very effective way of immediately iden-
tifying an error like this. It’s often still advisable to throw an exception (or fail
fast in some way) for an unhandled value if it can come from another system.
This is because that other system may be running a more up-to-date release of
the code that includes a new enum value while the current release of your
code may be old and not contain the updated switch statement logic.

6.6.3 Beware of the default case

Switch statements generally support a default case, which is a catch-all for any unhan-
dled values. Adding one of these to a switch statement that handles an enum can lead
to future enum values being implicitly handled and potentially cause surprises and
bugs.

 If a default case were added to the isOutcomeSafe() function, then it would
look like listing 6.34. The function now defaults to returning false for any new enum
values. This means that any business strategy with a prediction that is not explicitly
handled is regarded as nonsafe and is not initiated. This might seem like a sensible
default, but this is not necessarily true. A new prediction outcome might be COMPA-
NY_WILL_AVOID_LAWSUIT, in which case defaulting to false is definitely not sensible.
Using a default case causes new enum values to be implicitly handled, and as we estab-
lished earlier in this section, this can cause surprises and bugs.

Boolean isOutcomeSafe(PredictedOutcome prediction) {
 switch (prediction) {
 case COMPANY_WILL_GO_BUST:
 return false;
 case COMPANY_WILL_MAKE_A_PROFIT:

Listing 6.34 A default case

WORLD_WILL_END enum
value explicitly handled

167Future-proof enum handling
 return true;
 default:
 return false;
 }
}

THROWING AN ERROR FROM THE DEFAULT CASE

Another way in which a default case is sometimes used is to throw an exception that
indicates an enum value is unhandled. Listing 6.35 shows this. The code is only subtly
different from the version we saw earlier in listing 6.33: the throw new Unchecked-
Exception() statement is now in a default case rather than being outside the switch
statement. This might seem like an inconsequential, stylistic choice, but in some lan-
guages, it can make the code slightly more error prone in a subtle way.

 Some languages (e.g., C++) can display a compiler warning when a switch state-
ment does not exhaustively handle all values. This is a very useful warning to have.
Even if we have a unit test that should detect an unhandled enum value, it really
doesn’t hurt to have the extra layer of protection that the compiler warning offers. A
compiler warning might be noticed before a test failure so it saves engineers time.
And there is always some risk that a test might be accidentally deleted or turned off.
By adding a default case to the switch statement (as in listing 6.35), the compiler will
now determine that the switch statement handles all values, even if new ones are
added to the enum in the future. This means that the compiler will not output a warn-
ing, and the extra layer of protection is lost.

Boolean isOutcomeSafe(PredictedOutcome prediction) {
 switch (prediction) {
 case COMPANY_WILL_GO_BUST:
 return false;
 case COMPANY_WILL_MAKE_A_PROFIT:
 return true;
 default:
 throw new UncheckedException(
 "Unhandled prediction: " + prediction);
 }
}

To ensure that the compiler still outputs a warning for unhandled enum values, it can
be better to place the throw new UncheckedException() statement after the switch
statement. The code we saw earlier in this section (within listing 6.31) that demon-
strates this is repeated in the following listing.

Boolean isOutcomeSafe(PredictedOutcome prediction) {
 switch (prediction) {
 case COMPANY_WILL_GO_BUST:

Listing 6.35 Exception in default case

Listing 6.36 Exception after the switch statement

Defaults to returning false
for any new enum values

A default case means that
the compiler will always
think all values are handled.

Exception thrown
from the default case

168 CHAPTER 6 Avoid surprises
 return false;
 case COMPANY_WILL_MAKE_A_PROFIT:
 return true;
 }
 throw new UncheckedException(
 "Unhandled prediction: " + prediction);
}

6.6.4 Caveat: Relying on another project’s enum

Sometimes our code may rely on an enum that is owned by a different project or orga-
nization. How we should handle that enum will depend on the nature of our relation-
ship with that other project, as well as our own development and release cycle. If the
other project is likely to add new enum values without warning and this would imme-
diately break our code, we may have no choice but to be more permissive in how we
handle new values. As with many things, we need to use our judgment.

6.7 Can’t we just solve all this with testing?
An argument sometimes made against code quality efforts that concentrate on avoiding
surprises is that it’s a waste of time because tests should catch all these issues. From my
experience, this is a somewhat idealistic argument that does not work out in reality.

 At the point you write some code, you probably have control over how you test that
code. You may be extremely diligent and knowledgeable about testing and write a
near perfect set of tests that lock in all the correct behaviors and assumptions for your
code. But avoiding surprises is not only about the technical correctness of your own
code. It’s also about trying to ensure that the code other engineers write, which calls
your code, functions correctly. Testing alone may not be enough to ensure this for the
following reasons:

 Other engineers may not be so diligent about testing, meaning they don’t test
enough scenarios or corner cases to reveal that an assumption they made about
your code is wrong. This can be especially true if an issue would only reveal
itself in certain scenarios or for very large inputs.

 Tests don’t always accurately simulate the real world. An engineer testing their
code may be forced to mock out one of the dependencies. If this happens they
will program the mock to behave how they think the mocked out code behaves.
If the real code behaves in a surprising way and the engineer does not realize
this, then they will likely not program the mock correctly. If this happens, a bug
caused by the surprising behavior may never surface during testing.

 Some things are very hard to test. The section about side effects showed how
they can be problematic for multithreaded code. Bugs related to multithread-
ing issues are notoriously hard to test for because they often occur with a low
probability and reveal themselves only when the code is run at scale.

These same points apply with regard to making code hard to misuse (covered in chap-
ter 7).

Exception thrown after
the switch-statement

169Summary
 To reiterate, testing is extremely important. No amount of code structuring or wor-
rying about code contracts will ever replace the need for high-quality and thorough
testing. But in my experience the reverse is also true; testing alone does not make up
for unintuitive or surprising code.

Summary
 The code we write will often be depended on by code that other engineers

write.

– If other engineers misinterpret what our code does, or fail to spot special sce-
narios they need to handle, then it’s likely that code built on top of ours will
be buggy.

– One of the best ways to avoid causing surprises for callers of a piece of code is
to ensure that important details are in the unmistakably obvious part of the
code’s contract.

 Another source of surprises can occur if we make brittle assumptions about
code we depend on.

– An example of this is failing to anticipate new values being added to an
enum.

– It’s important to ensure that either our code stops compiling or a test fails if
code we depend on breaks one of our assumptions.

 Testing alone does not make up for code that does surprising things: if another
engineer misinterprets our code, they may also misinterpret what scenarios
they need to test.

Make code hard to misuse
Chapter 3 discussed how the code we write is often just one piece of the jigsaw in a
much larger piece of software. For a piece of software to function correctly the dif-
ferent pieces of code have to fit together and work. If a piece of code is easy to mis-
use, then the chances are sooner or later it will get misused and the software will
not function correctly.

 Code is often easy to misuse when there are assumptions baked in that are unin-
tuitive or ambiguous and other engineers are not prevented from doing the wrong
thing. Some common ways code can be misused are as follows:

 Callers providing invalid inputs
 Side effects from other pieces of code (such as them modifying input

parameters)

This chapter covers
 How the misuse of code can lead to bugs

 Common ways code can be easy to misuse

 Techniques for making code hard to misuse
170

171Consider making things immutable
 Callers not calling functions at the correct times or in the correct order (as seen
in chapter 3)

 A related piece of code being modified in a way that breaks an assumption

Writing documentation and providing usage instructions for code can help mitigate
against these. But as we saw in chapter 3, these are like small print in the code con-
tract and can often be overlooked and become out of date. It’s therefore important to
design and write code in a way that makes it hard to misuse. This chapter shows some
common ways code can be easy to misuse and demonstrates techniques for instead
making it hard to misuse.

7.1 Consider making things immutable
Something is immutable if its state cannot be changed after it’s created. To understand
why immutability is desirable, it’s important to consider how the opposite, mutability,
can cause problems. Some of the problems with things being mutable have already
cropped up in this book:

Hard to misuse
The idea of avoiding problems by making things hard (or impossible) to misuse is a
well-established principle in design and manufacturing. An example of this is the lean
manufacturing concept of poka yokea coined by Shigeo Shingo in the 1960s in the
context of reducing defects during car manufacturing. More generally, it is a common
feature of defensive design principles. Some real-world examples of making things
hard to misuse are the following:

 Many designs of food processors will only operate when the lid is properly
attached. This prevents the blades from being accidentally spun while some-
one might have their fingers near them.

 Different sockets and plugs have different shapes; for example a power plug
can’t be plugged into an HDMI socket (this example was used in chapter 1).

 The pull handle to operate an ejection seat in a fighter jet is positioned suffi-
ciently far away from the other aircraft controls that it minimizes the chance of
it being accidentally operated. In older designs of ejection seats (with an over-
head pull handle), the position of the handle also meant that the act of reach-
ing for it made the occupant straighten their backb (reducing the risk of injury
during ejection), so the handle position simultaneously served two functions
in terms of making misuse difficult.

In the world of software engineering, this principle is sometimes captured by the
statement that APIs and interfaces should be “easy to use and hard to misuse,”
which is sometimes abbreviated EUHM.

a https://tulip.co/ebooks/poka-yoke/
b http://mng.bz/XYM1

https://tulip.co/ebooks/poka-yoke/
http://mng.bz/XYM1

172 CHAPTER 7 Make code hard to misuse
 In chapter 3 we saw how having a mutable class with setup functions made it
easy to misconfigure, which results in it being in an invalid state.

 In chapter 6 we saw how a function that mutates an input parameter can cause
a nasty surprise.

On top of these, there are even more reasons mutability can cause problems, includ-
ing the following:

 Mutable code can be harder to reason about. To illustrate this, let’s consider a real-
world scenario that is somewhat analogous. If you buy a carton of juice from a
shop, it will likely have a tamper-proof seal. This lets you know that the content
of the carton has not been mutated between leaving the factory and you buying
it. It’s very easy for you to know, with a high degree of confidence, what is inside
the carton (juice) and who put it there (the manufacturer). Now imagine there
is a carton of juice in the shop with no seal: who knows what might have hap-
pened to that carton? It might have picked up some dirt or someone nefarious
might have added something to it. It’s very hard to reason about what exactly is
in the carton and who might have put it there. When writing code, if an object
is immutable, then it’s a bit like having a tamper-proof seal that no one can ever
break. You can pass the object all over the place and know with certainty that no
one has altered it or added anything to it.

 Mutable code can cause issues with multithreading. We saw in chapter 6 how side
effects can cause problems in multithreaded code. If an object is mutable, then
multithreaded code using that object can be particularly susceptible to issues. If
one thread is in the middle of reading from an object, while another is modify-
ing it, then an error might occur. An example of this might be if one thread is
just about to read the last element in a list while another thread is removing
that element from the list.

It’s not always possible or appropriate to make things immutable. There are inevitably
some parts of our code that have to keep track of changing state, and these will obvi-
ously require some kinds of mutable data structures to do this. But, as was just
explained, having mutable objects can increase the complexity of the code and lead to
problems, so it can often be a good idea to take the default stance that things should be
as immutable as possible and make things mutable only where it’s necessary.

7.1.1 Mutable classes can be easy to misuse

One of the most common ways a class is made mutable is by providing setter func-
tions. Listing 7.1 shows an example of this. The TextOptions class contains styling
information about how to render some text. Both the font and the font size can be set
by calling the setFont() and setFontSize() functions, respectively.

 In this example, there’s no limit on who can call the setFont() and setFont-
Size() functions, so any code that has access to an instance of TextOptions can
change the font or the font size. This can make it very easy to misuse an instance of
the TextOptions class.

173Consider making things immutable

class TextOptions {
 private Font font;
 private Double fontSize;

 TextOptions(Font font, Double fontSize) {
 this.font = font;
 this.fontSize = fontSize;
 }

 void setFont(Font font) {
 this.font = font;
 }

 void setFontSize(Double fontSize) {
 this.fontSize = fontSize;
 }

 Font getFont() {
 return font;
 }

 Double getFontSize() {
 return fontSize;
 }
}

Listing 7.2 demonstrates how an instance of TextOptions might be misused. The
sayHello() function creates an instance of TextOptions with some default styling
information. It passes this instance to messageBox.renderTitle() and then to
messageBox.renderMessage(). Unfortunately messageBox.renderTitle()

mutates the TextOptions by setting the font size to 18. This means that messageBox
.renderMessage() is called with TextOptions that specify a font size of 18 (instead
of the intended value of 12).

 We saw in chapter 6 how mutating an input parameter is often bad practice, so the
messageBox.renderTitle() function is probably not great code. But despite being
discouraged, code like this might still exist in the codebase, and currently the Text-
Options class does nothing to defend itself against this kind of misuse.

class UserDisplay {
 private final MessageBox messageBox;
 ...

 void sayHello() {
 TextOptions defaultStyle = new TextOptions(Font.ARIAL, 12.0);
 messageBox.renderTitle("Important message", defaultStyle);
 messageBox.renderMessage("Hello", defaultStyle);
 }
}

Listing 7.1 A mutable class

Listing 7.2 A bug due to mutability

The font can be
changed at any time
by calling setFont().

The font size can be
change at any time by
calling setFontSize().

Creates an instance
of TextOptions

Passes instance to messageBox.renderTitle()
and then to messageBox.renderMessage()

174 CHAPTER 7 Make code hard to misuse
...

class MessageBox {
 private final TextField titleField;
 private final TextField messageField;
 ...

 void renderTitle(String title, TextOptions baseStyle) {
 baseStyle.setFontSize(18.0);
 titleField.display(title, baseStyle);
 }

 void renderMessage(String message, TextOptions style) {
 messageField.display(message, style);
 }
}

Because the TextOptions class is mutable, any code that passes an instance of it to
some other code runs the risk that it might get misused by changing things. It would
be much better if code could freely pass an instance of TextOptions around and
know that it’s not going to be mutated. Just like the juice carton, we want the Text-
Options class to have a tamper-proof seal. The next two subsections demonstrate
some ways we could achieve this.

7.1.2 Solution: Set values only at construction time

We can make a class immutable (and prevent it being misused) by ensuring that all
the values are provided at construction time and that they cannot be changed after
this. Listing 7.3 shows the TextOptions class with the setter functions removed. This
prevents any code outside of the class ever modifying the font and fontSize mem-
ber variables.

 When defining a variable within a class, it’s often possible to prevent it from being
reassigned even by code within the class. How to do this can vary between languages
but common keywords are const, final, or readonly. The pseudocode convention
in this book uses the keyword final for this concept. The font and fontSize vari-
ables have been marked as final. This prevents anyone accidentally adding code to the
class to reassign them, and it makes it explicitly clear that they will not (and should
not) ever change.

class TextOptions {
 private final Font font;
 private final Double fontSize;

 TextOptions(Font font, Double fontSize) {
 this.font = font;
 this.fontSize = fontSize;
 }

Listing 7.3 Immutable TextOptions class

The instance of TextOptions is
mutated by changing the font size.

Member variables
marked as final

Member variables set at
construction time only

175Consider making things immutable
 Font getFont() {
 return font;
 }

 Double getFontSize() {
 return fontSize;
 }
}

This now makes it impossible for other code to misuse the TextOptions object by
mutating it. But this is not the whole story because the MessageBox.render-
Title() function that we saw earlier needs a way to override just the font size of some
TextOptions. For this we can use the copy-on-write pattern. This will be covered in
the next subsection, but the end result is that the MessageBox.renderTitle()
function would end up looking like the following listing.

class MessageBox {
 private final TextField titleField;
 ...

 void renderTitle(String title, TextOptions baseStyle) {
 titleField.display(
 title,
 baseStyle.withFontSize(18.0));
 }
 ...
}

In the TextOptions example we just saw, all the text option values are required. But
if some were instead optional, it might be better to use either the builder pattern or
the copy-on-write pattern (both covered in the next subsection). Using named argu-
ments in conjunction with optional parameters can also be a good approach, but, as
noted in chapter 5, not all languages support named arguments.

NOTE: CONST MEMBER VARIABLES IN C++ In C++, the equivalent of marking a
member variable as final is to use the const keyword. In C++ code, marking
a member variable as const can be a bad idea because it can cause issues with
move semantics. For a fuller explanation, this blog post goes into the details:
http://mng.bz/y9Xo.

7.1.3 Solution: Use a design pattern for immutability

Removing the setter functions from a class and marking the member variables as final
can avoid bugs by preventing the class from being mutated. But as was just noted, it
can also make the class impractical to use. If some values are optional or if mutated
versions of the class need to be created, it can often be necessary to implement the

Listing 7.4 TextOptions not mutated

Returns a copy of baseStyle but with
the font size changed. The original
baseStyle object is unchanged.

http://mng.bz/y9Xo

176 CHAPTER 7 Make code hard to misuse
class in a more versatile way. Two design patterns that can often be useful for this are the
following:

 The builder pattern
 The copy-on-write pattern

THE BUILDER PATTERN

When some values that a class can be constructed with are optional, it can become
quite unwieldy to specify them all in the constructor. Rather than making the class
mutable by adding setter functions, it can often be better to use the builder pattern.1

 The builder pattern effectively splits a class into two classes:

 A builder class that allows values to be set one by one
 An immutable, read-only version of the class that is built from the builder

When constructing a class, it will often be the case that some values are required and
some are optional. To demonstrate how the builder pattern can handle this, we will
assume that for the TextOptions class the font is a required value and the font size is
an optional value. Listing 7.5 shows the TextOptions class along with a builder class
for it.

 An important thing to note is that the TextOptionsBuilder class takes the
required font value as a parameter to its constructor (not via a setter function). This
makes it impossible to write code that builds an invalid object. If the font were speci-
fied with a setter function, we would require a runtime check to ensure the object is
valid, which is generally inferior to a compile time check (as discussed in chapter 3).

class TextOptions {
 private final Font font;
 private final Double? fontSize;

 TextOptions(Font font, Double? fontSize) {
 this.font = font;
 this.fontSize = fontSize;
 }

 Font getFont() {
 return font;
 }

 Double? getFontSize() {
 return fontSize;
 }
}

1 A form of the builder pattern was popularized by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides in the book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994).

Listing 7.5 The builder pattern

The TextOptions class
contains only read-only
getter functions.

177Consider making things immutable
class TextOptionsBuilder {
 private final Font font;
 private Double? fontSize;

 TextOptionsBuilder(Font font) {
 this.font = font;
 }

 TextOptionsBuilder setFontSize(Double fontSize) {
 this.fontSize = fontSize;
 return this;
 }

 TextOptions build() {
 return new TextOptions(font, fontSize);
 }
}

Figure 7.1 illustrates the relationship between the TextOptions class and the Text-
OptionsBuilder class.

Figure 7.1 The builder pattern effectively splits a class into two. The builder class can be
mutated in order to set values. A call to the build() function then returns an instance of an
immutable class containing the configured values.

The builder takes any required
values in its constructor.

The builder takes
any optional values
via setter functions.Setter returns this to allow

chaining of function calls.

Once all the values have been
specified, a caller calls build
to get a TextOptions object.

TextOptionsBuilder

TextOptionsBuilder(Font font)

TextOptionsBuilder setFontSize(Double fontSize)

TextOptions build()

Mutable

Immutable

Required values supplied
via the constructor

Optional values supplied
via setter functions

TextOptions

Font getFont()

Double? getFontSize()

Values can be read but
never modified.

When build() is called, an instance of TextOptions
(which is immutable) is constructed and returned.

178 CHAPTER 7 Make code hard to misuse
The following snippet shows an example of building an instance of TextOptions
where both the required font value and the optional font size value are specified:

TextOptions getDefaultTextOptions() {
 return new TextOptionsBuilder(Font.ARIAL)
 .setFontSize(12.0)
 .build();
}

The following snippet shows an example of building an instance of TextOptions
where only the required font value is specified:

TextOptions getDefaultTextOptions() {
 return new TextOptionsBuilder(Font.ARIAL)
 .build();
}

The builder pattern can be a very useful way of creating an immutable class when
some (or all) of the values are optional. If we need to get a slightly modified copy of
an instance of a class after construction, then there are ways to make this work with
the builder pattern (by providing a function to create a prepopulated builder from a
class), but this can become a little cumbersome. The next subsection discusses an
alternative pattern that can make this a lot easier.

THE COPY-ON-WRITE PATTERN

Sometimes it’s necessary to get a modified version of an instance of a class. An exam-
ple of this is the renderTitle() function we saw earlier (repeated in the following
snippet). It needs to retain all the styles from baseStyle but modify only the font

Implementations of the builder pattern
When implementing the builder pattern, engineers often use specific techniques and
programming language features to make the code easier to use and maintain. Some
examples of this are as follows:

 The use of inner classes to make the name spacing a bit nicer
 Creating a circular dependency between a class and its builder so a prepopu-

lated builder can be created from a class (via a toBuilder() function)
 Making the constructor of the class private to force callers to use the builder
 Using an instance of the builder as a parameter to the constructor to reduce

the amount of boilerplate

Appendix C (at the end of the book) contains a more complete example (in Java) of
implementing the builder pattern using all these techniques.

There are also tools that can auto-generate class and builder definitions. An example
of this is the AutoValue tool for Java: http://mng.bz/MgPD.

http://mng.bz/MgPD

179Consider making things immutable
size. Unfortunately allowing this to happen by making TextOptions mutable can
cause issues, as we saw earlier:

void renderTitle(String title, TextOptions baseStyle) {
 baseStyle.setFont(18.0);
 titleField.display(title, baseStyle);
}

A way to support this use case, while also ensuring that TextOptions is immutable is
the copy-on-write pattern. Listing 7.6 shows what the TextOptions class looks like with
two copy-on-write functions added. The withFont() and withFontSize() func-
tions both return a new TextOptions object with only the font or font size changed
(respectively).

 In addition to a public constructor that takes the required font value, the Text-
Options class also has a private constructor that takes every value (required and
optional). This allows the copy-on-write functions to create a copy of the Text-
Options with only one of the values changed.

class TextOptions {
 private final Font font;
 private final Double? fontSize;

 TextOptions(Font font) {
 this(font, null);
 }

 private TextOptions(Font font, Double? fontSize) {
 this.font = font;
 this.fontSize = fontSize;
 }

 Font getFont() {
 return font;
 }

 Double? getFontSize() {
 return fontSize;
 }

 TextOptions withFont(Font newFont) {
 return new TextOptions(newFont, fontSize);
 }

 TextOptions withFontSize(Double newFontSize) {
 return new TextOptions(font, newFontSize);
 }
}

Listing 7.6 Copy-on-write pattern

Public constructor that
takes any required values

Calls the private
constructor

Private constructor
that takes all values
(required and optional)

Returns a new TextOptions object
with only the font changed

Returns a new TextOptions object
with only the font size changed

180 CHAPTER 7 Make code hard to misuse
Figure 7.2 illustrates how the copy-on-write implementation of the TextOptions class
works.

Figure 7.2 With the copy-on-write pattern, any change to a value results in a new instance of the class
being created, which contains the desired change. The existing instance of the class is never modified.

An instance of TextOptions can be constructed using the constructor and calls to
the copy-on-write functions:

TextOptions getDefaultTextOptions() {
 return new TextOptions(Font.ARIAL)
 .withFontSize(12.0);
}

When some code like the renderTitle() function needs a mutated version of a
TextOptions object, it can easily acquire a mutated copy without affecting the origi-
nal object:

void renderTitle(String title, TextOptions baseStyle) {
 titleField.display(
 title,
 baseStyle.withFontSize(18.0));
}

Immutable

TextOptions

TextOptions(Font font)

Font getFont()

Double? getFontSize()

TextOptions withFont(Font newFont)

TextOptions withFontSize(Double newFontSize)

Required values supplied
via the constructor

Getter functions for
reading values

TextOptions

Immutable

Creates a new instance
of TextOptions with all
the same values, except
for a new font

The original instance
of TextOptions is left
unchanged.

TextOptions

Immutable

Creates a new instance of
TextOptions with all the
same values, except
for a new font size

The original instance
of TextOptions is left
unchanged.

A new, modified version of baseStyle
is created by calling withFontSize().

181Consider making things deeply immutable
Making classes immutable can be a great way to minimize the chance that they get
misused. Sometimes this can be as simple as removing setter methods and providing
values only at construction time. In other scenarios it can be necessary to use an
appropriate design pattern. Even with these approaches, mutability can still creep into
the code in deeper ways; the next section discusses this.

7.2 Consider making things deeply immutable
Engineers are very often aware of the benefits of immutability and follow the advice in
section 7.1. But it can be easy to overlook more subtle ways a class can inadvertently
become mutable. A common way a class can accidentally become mutable is due to
deep mutability. This can happen when a member variable is of a type that is itself
mutable and other code somehow has access to it.

7.2.1 Deep mutability can lead to misuse

If the TextOptions class (from section 7.1) stored a font family instead of a single
font, it might use a list of fonts as a member variable. The following listing shows what
the TextOptions class looks like with this change.

class TextOptions {
 private final List fontFamily;
 private final Double fontSize;

 TextOptions(List fontFamily, Double fontSize) {
 this.fontFamily = fontFamily;
 this.fontSize = fontSize;
 }

 List getFontFamily() {
 return fontFamily;
 }

 Double getFontSize() {
 return fontSize;
 }
}

This can inadvertently make the class mutable, as the class doesn’t have complete con-
trol over the list of fonts. To appreciate why, it’s important to remember that the
TextOptions class does not contain a list of fonts; it instead contains a reference to a
list of fonts (as shown in figure 7.3). If another piece of code also has a reference to
this same list of fonts, then any changes it makes to the list will affect the Text-
Options class too, because they are both referring to the same exact list.

Listing 7.7 A deeply mutable class

fontFamily is
a list of fonts.

182 CHAPTER 7 Make code hard to misuse

Figure 7.3 Objects are often held by reference, meaning multiple pieces of code can all be
referring to the same object. This can be a cause of deep mutability.

As figure 7.3 shows, there are two scenarios in which other code might have a refer-
ence to the same list of fonts that the TextOptions class contains:

 Scenario A—The code that constructs the TextOptions class might hold on to
a reference to the list of fonts and make changes at some later time.

 Scenario B—Code that calls TextOptions.getFontFamily() is given a refer-
ence to the list of fonts. It can use this reference to modify the contents of the list.

SCENARIO A CODE EXAMPLE

Listing 7.8 demonstrates scenario A. The code creates a list of fonts containing
Font.ARIAL and Font.VERDANA. It then constructs an instance of TextOptions
with this list. After this, the list is cleared and Font.COMIC_SANS is added. Because
the code in the listing and the instance of TextOptions are both referring to the
same list, the fontFamily within the instance of TextOptions is now also set to
Font.COMIC_SANS.

TextOptions

private final List fontFamily;

List getFontFamily() {
 return fontFamily;
}

List

Font.ARIAL
Font.VERDANA

Contents:

List fontFamily = [
 Font.ARIAL, Font.VERDANA];

TextOptions textOptions =
 new TextOptions(fontFamily, 12.0);

Creates an instance of TextOptions
with a reference to the fontFamily list

Creates a new list

Refers to the
list object

List fontFamily =
 textOptions.getFontFamily();

Returns a reference
to the list object

Refers to the
list object

183Consider making things deeply immutable

...
List fontFamily = [Font.ARIAL, Font.VERDANA];

TextOptions textOptions =
 new TextOptions(fontFamily, 12.0);

fontFamily.clear();
fontFamily.add(Font.COMIC_SANS);
...

SCENARIO B CODE EXAMPLE

Listing 7.9 demonstrates scenario B. An instance of TextOptions is constructed
with a font list containing Font.ARIAL and Font.VERDANA. Some code then gets a
reference to this list by calling textOptions.getFontFamily(). The code then
mutates the referenced list by clearing it and adding Font.COMIC_SANS. This means
that the font family within the instance of TextOptions is now also set to Font
.COMIC_SANS.

...
TextOptions textOptions =
 new TextOptions([Font.ARIAL, Font.VERDANA], 12.0);

List fontFamily = textOptions.getFontFamily();
fontFamily.clear();
fontFamily.add(Font.COMIC_SANS);
...

Making code mutable in these ways can very easily lead to it being misused. When an
engineer calls a function like textOptions.getFontFamily() the list might be
passed around several times as other functions or constructors are called. It can be
quite easy to lose track of where it came from and whether it’s safe to modify it.
Sooner or later some code might modify the list, and it will cause a weird bug that is
extremely hard to track down. It can be much better to make the class deeply
immutable and avoid this kind of problem in the first place. The next subsections
demonstrate a couple of ways this can be achieved.

7.2.2 Solution: Defensively copy things

As we just saw, problems with deep mutability can occur when a class holds a reference
to an object that another piece of code may also hold a reference to. This can be
avoided by ensuring that the object the class refers to is one that only it knows about
and that no other code can ever get a reference to.

Listing 7.8 List modified after construction

Listing 7.9 List modified by caller

A reference to the fontFamily list is
passed to the TextOptions constructor.

The fontFamily list is modified. This is the
same list that textOptions has a reference to.

Gets a reference to the
same list that textOptions
has a reference to

Modifies exactly the
same list that textOptions
has a reference to

184 CHAPTER 7 Make code hard to misuse
 This can be achieved by making defensive copies of objects both when the class is
constructed and also whenever an object is returned from a getter function. This isn’t
necessarily the best solution (as this subsection and next one will explain), but it does
work and can be a simple way to make things deeply immutable.

 Listing 7.10 shows what the TextOptions class would look like if it made defen-
sive copies of the fontFamily list. The constructor creates a copy of the fontFamily
list and stores a reference to this copy (solving scenario A). And the getFont-
Family() function creates a copy of the fontFamily and returns a reference to this
copy (solving scenario B).

class TextOptions {
 private final List fontFamily;
 private final Double fontSize;

 TextOptions(List fontFamily, Double fontSize) {
 this.fontFamily = List.copyOf(fontFamily);
 this.fontSize = fontSize;
 }

 List getFontFamily() {
 return List.copyOf(fontFamily);
 }

 Double getFontSize() {
 return fontSize;
 }
}

Defensively copying things can be quite effective at making a class deeply immutable,
but it has some obvious drawbacks:

 Copying things can be expensive. In the case of the TextOptions class this is
probably fine because we don’t expect there to be too many fonts in a font fam-
ily, and the constructor and getFontFamily() function probably won’t be
called that many times. But if there were hundreds of fonts in a font family, and
the TextOptions class was used extensively, then all this copying could
become a big problem for performance.

 It often doesn’t protect against changes from within the class. In most program-
ming languages, marking a member variable as final (or const or
readonly) doesn’t prevent deep mutations. Even with the fontFamily list
marked as final, an engineer could add code within the class that calls font-
Family.add (Font.COMIC_SANS). If an engineer accidentally did this, the
code would still compile and run, so just copying things is usually not a com-
plete guarantee of deep mutability.

Luckily, in many scenarios, there is often a more efficient and robust way of making
classes deeply immutable. The next subsection discusses this.

Listing 7.10 Defensive copying

A copy of the fontFamily list that
only this class has a reference to

The constructor copies the list and
stores a reference to that copy.

A copy of the
list is returned.

185Consider making things deeply immutable
7.2.3 Solution: Use immutable data structures

Making things immutable is a widely accepted good practice, and, as a result, many
utilities have been built that provide immutable versions of common types or data
structure. The benefit of these is that once they are constructed no one can modify
their contents. This means that they can be passed around without the need to make
defensive copies.

 Depending on which language we’re using, some appropriate immutable data
structure choices for the fontFamily list might be the following:

 Java—The ImmutableList class from the Guava library (http://mng.bz/aK09)
 C#—The ImmutableList class from System.Collections.Immutable (http://

mng.bz/eMWG)
 JavaScript-based language—A couple of options are the following:

– The List class from the Immutable.js module (http://mng.bz/pJAR)
– A JavaScript array, but with the Immer module used to make it immutable

(https://immerjs.github.io/immer/)

These libraries contain a whole host of different immutable types, such as sets, maps,
and many more, so we can often find an immutable version of whatever standard data
type we might need.

 Listing 7.11 shows what the TextOptions class looks like if it’s changed to use an
ImmutableList. There is no need to defensively copy anything, as it doesn’t matter if
other code has a reference to the same list (because it’s immutable).

class TextOptions {
 private final ImmutableList fontFamily;
 private final Double fontSize;

 TextOptions(ImmutableList fontFamily, Double fontSize) {
 this.fontFamily = fontFamily;
 this.fontSize = fontSize;
 }

Pass by value
In languages like C++, the programmer has a lot more control over how objects are
passed into a function or returned. There is the distinction between pass by reference
(or pointer) and pass by value. Pass by value will mean that a copy of the object is
created rather than just a reference (or pointer) to it. This prevents code from mutat-
ing the original object but still incurs the downsides of copying things.

C++ also has the idea of const correctness (mentioned in the next subsection), which
can often be a better way to keep things immutable.

Listing 7.11 Using ImmutableList

Even code within this class
cannot modify the contents
of the ImmutableList.

There is no way that the caller
of the constructor can modify

the list at some later time.

http://mng.bz/aK09
https://immerjs.github.io/immer/
http://mng.bz/pJAR
http://mng.bz/eMWG
http://mng.bz/eMWG

186 CHAPTER 7 Make code hard to misuse
 ImmutableList getFontFamily() {
 return fontFamily;
 }

 Double getFontSize() {
 return fontSize;
 }
}

Using immutable data structures is one of the best ways to ensure that classes are
deeply immutable. They avoid the downsides of defensively copying things and ensure
that even code within the class can’t inadvertently cause mutations.

7.3 Avoid overly general data types
Simple data types like integers, strings, and lists are some of the most fundamental
building blocks of code. They are incredibly general and versatile and can represent
all manner of different things. The flip side of being very general and versatile is that
they are not very descriptive and are also quite permissive in terms of which values
they can contain.

 Just because something can be represented by a type like an integer or a list doesn’t
necessarily mean that it’s a good way to represent that thing. The lack of descriptiveness
and the amount of permissiveness can make code too easy to misuse.

7.3.1 Overly general types can be misused

A certain piece of information can often require more than one value to fully repre-
sent it. An example of this is a location on a 2D map: it requires a value for both the
latitude and the longitude to fully describe it.

 If we’re writing some code to process locations on a map, then we’ll likely need a
data structure for representing a location. The data structure needs to contain values
for both the location’s latitude and its longitude. A quick and simple way of doing this
might be to use a list (or an array), where the first value in the list represents the lati-
tude and the second value represents the longitude. This means that a single location
would have the type List<Double> and a list of multiple locations would have the
type List<List<Double>>. Figure 7.4 shows what this looks like.

Const correctness in C++
C++ has quite advanced support for immutability at the compiler level. When defining
a class, engineers can indicate which member functions don’t cause mutations by
marking them as const. If a function returns a reference (or pointer) to an object
that is marked as const, then the compiler will ensure that this can only be used to
call nonmutable member functions on that object.

This can often negate the need for separate classes to represent an immutable ver-
sion of something. More information on const correctness in C++ can be found at
https://isocpp.org/wiki/faq/const-correctness.

The ImmutableList is returned,
safe in the knowledge that
callers cannot modify it.

https://isocpp.org/wiki/faq/const-correctness

187Avoid overly general data types

Figure 7.4 A very general data type like a list can be used to represent a
location on a map (a latitude and longitude pair). But just because it can
represent it doesn’t necessarily mean it’s a good way to represent it.

Unfortunately, a list is an incredibly general data type, and using it in this way could
make the code easy to misuse. To demonstrate this, listing 7.12 contains a class for dis-
playing locations on a map. The markLocationsOnMap() function takes a list of
locations and for each location marks it on the map. As seen in figure 7.4, each loca-
tion is represented by a List<Double>, meaning the collection of all locations to
mark on the map is of the type List<List<Double>>. This gets kind of complicated,
and documentation is required to explain how the input parameter should be used.

class LocationDisplay {
 private final DrawableMap map;
 ...

 /**
 * Marks the locations of all the provided coordinates
 * on the map.
 *
 * Accepts a list of lists, where the inner list should
 * contain exactly two values. The first value should
 * be the latitude of the location and the second value
 * the longitude (both in degrees).
 */
 void markLocationsOnMap(List<List<Double>> locations) {
 for (List<Double> location in locations) {
 map.markLocation(location[0], location[1]);
 }
 }
}

Listing 7.12 Overly general data type

List<Double> location = [51.178889, -1.826111];

A single location on a map:

Latitude Longitude

A collection of locations:

List<List<Double>> locations = [
 [51.178889, -1.826111],
 [53.068497, -4.076231],
 [57.291302, -4.463927]
];

Each inner list
represents a location.

Semi-complicated
documentation is
required to explain the
input parameter.

The first and second items
are read from each inner list.

188 CHAPTER 7 Make code hard to misuse
This might seem quick and easy, but it has a number of drawbacks that make the code
easy to misuse, such as the following (and those shown in figure 7.5).

 The type List<List<Double>> does absolutely nothing to explain itself: if an
engineer weren’t aware of the documentation for the markLocationsOnMap()
function, then they would have no idea what this list is or how to interpret it.

 It’s very easy for an engineer to get confused about which way around the lati-
tude and longitude should be. If they hadn’t read the documentation fully, or
had misinterpreted it, then they might place the longitude before the latitude,
which would lead to a bug.

 There is very little type safety: the compiler cannot guarantee how many ele-
ments are inside a list. It’s perfectly possible for some of the inner lists to contain
the wrong number of values (as shown in figure 7.5). If this happens then the
code will compile fine and the problem will be noticed only at runtime (if at all).

Figure 7.5 Representing something specific like a latitude–longitude pair using a list of
doubles can make code very easy to misuse.

In summary, it’s almost impossible to call the markLocationsOnMap() function cor-
rectly without having detailed knowledge of (and correctly following) the small print
in the code contract. Given that small print is often not a very reliable way to guaran-
tee that other engineers do something, this makes it highly likely that the
markLocationsOnMap() function will be misused at some point, which could obvi-
ously lead to bugs.

PARADIGMS HAVE A HABIT OF SPREADING

The shelf analogy in chapter 1 explained how doing one thing in a slightly hacky way
can often force more stuff to be done in a hacky way. This could easily happen with

List<Double> location = [-1.826111, 51.178889];

Latitude and longitude the wrong way around:

Longitude Latitude

List<Double> location = [51.178889];

Too few values provided:

List<Double> location = [4.0, 8.0, 15.0, 16.0, 23.0, 42.0];

Too many values provided:

List<Double> location = [];

No values provided:

All of these are incorrect,
but because they are all still a
valid List<Double>, the code
compiles fine.

189Avoid overly general data types
this List<Double> representation of a map location. Imagine that another engineer
is implementing a class to represent a feature on a map and an output from that class
has to be fed into the markLocationsOnMap() function. They are pushed down the
path of also using the List<Double> representation of a location so their code can
interact easily with the markLocationsOnMap() function.

 Listing 7.13 shows the code they might write. The getLocation() function
returns a List<Double> containing the latitude and longitude. Notice how another
chunk of semi-complicated documentation is required to explain the return type of
the function. This, in itself, should worry us a bit: the instructions about how to store
the latitude and longitude in a list are now encoded and documented in two separate
places (the MapFeature class and the LocationDisplay class). This is an example
of there being two sources of truth instead of a single source of truth. This can lead to
bugs and will be discussed more in section 7.6.

class MapFeature {
 private final Double latitude;
 private final Double longitude;
 ...

 /*
 * Returns a list with 2 elements in it. The first value
 * represents the latitude and the second value represents
 * the longitude (both in degrees).
 */
 List<Double> getLocation() {
 return [latitude, longitude];
 }
}

The author of the original LocationDisplay.markLocationsOnMap() function
probably knows that using a List<Double> is a kind of hacky way to represent a map
location. But they may have justified it on the basis that it was only one function and is
therefore unlikely to cause too much damage to the codebase as a whole. The prob-
lem is that slightly hacky things like this have a habit of spreading, as it becomes hard
for other engineers to interact with them without also resorting to doing something
slightly hacky. And this can spread quite quickly and quite far: if yet another engineer
needs to use the MapFeature class for something else, they may be forced to adopt
the List<Double> representation for that other thing too. Before we know it, the
List<Double> representation is pervasive and very hard to get rid of.

7.3.2 Pair types are easy to misuse

Many programming languages have a pair data type. This is sometimes part of the
standard libraries, and when it’s not, there is often an add-on library somewhere that
provides an implementation of it.

Listing 7.13 Other code adopts the paradigm

Semi-complicated
documentation is
required to explain
the return type.

190 CHAPTER 7 Make code hard to misuse

r.
 The point of a pair is that it stores two values that can be of the same or different
types. The values are referred to as first and second. A simple implementation of a
pair data type would look something like the following listing.

class Pair<A, B> {
 private final A first;
 private final B second;

 Pair(A first, B second) {
 this.first = first;
 this.second = second;
 }

 A getFirst() {
 return first;
 }

 B getSecond() {
 return second;
 }
}

If a Pair<Double, Double> were used to represent a location on a map (instead of
a List<Double>), then the markLocationsOnMap() function would look like list-
ing 7.15. Note that semi-complicated documentation is still required to explain the
input parameter, and the input parameter type (List<Pair<Double, Double>>) is
still not very self-descriptive.

class LocationDisplay {
 private final DrawableMap map;
 ...

 /**
 * Marks the locations of all the provided coordinates
 * on the map.
 *
 * Accepts a list of pairs, where each pair represents a
 * location. The first element in the pair should be the
 * latitude and the second element in the pair should be
 * the longitude (both in degrees).
 */
 void markLocationsOnMap(List<Pair<Double, Double>> locations) {
 for (Pair<Double, Double> location in locations) {
 map.markLocation(
 location.getFirst(),
 location.getSecond());
 }
 }
}

Listing 7.14 Pair data type

Listing 7.15 Usage of Pair for location

Generics (or templating) allow
Pair to store any types.

Values referred to as
“first” and “second”

Semi-complicated
documentation is
required to explain
the input paramete

191Avoid overly general data types
Using Pair<Double, Double> instead of List<Double> solves some of the prob-
lems we noted in the previous subsection: the pair has to contain exactly two values, so
it prevents callers from accidentally providing too few or too many values. But it does
not solve the other problems:

 The type List<Pair<Double, Double>> still does very little to explain itself.
 It’s still easy for an engineer to get confused about which way around the lati-

tude and longitude should be.

An engineer still requires detailed knowledge of the small print in the code contract
to call markLocationsOnMap() correctly, so using Pair<Double, Double> is still
not a great solution in this scenario.

7.3.3 Solution: Use a dedicated type

Chapter 1 explained how taking shortcuts often actually slows us down in the mid- to
long-term. Using an overly general data type (like a list or pair) for a very specific
thing can often be an example of such a shortcut. It can seem like a lot of effort or
overkill to define a new class (or struct) to represent something, but it’s usually less
effort than it might seem and will save engineers a lot of head scratching and poten-
tial bugs further down the line.

 For the case of representing a 2D location of a map, a simple way to make the code
less easy to misuse and misinterpret is to define a dedicated class for representing a
latitude and longitude. Listing 7.16 shows what this new class might look like. It’s
an incredibly simple class and is unlikely to take more than a few minutes to code and
test.

/**
 * Represents a latitude and longitude in degrees.
 */
class LatLong {
 private final Double latitude;
 private final Double longitude;

 LatLong(Double latitude, Double longitude) {
 this.latitude = latitude;
 this.longitude = longitude;
 }

 Double getLatitude() {
 return latitude;
 }

 Double getLongitude() {
 return longitude;
 }
}

Listing 7.16 LatLong class

192 CHAPTER 7 Make code hard to misuse
Using this new LatLong class, the markLocationsOnMap() function looks like list-
ing 7.17. It now requires no documentation to explain the intricacies of the input
parameter, as it’s completely self-explanatory. There is now good type safety, and it’s
extremely hard to confuse the latitude with the longitude.

class LocationDisplay {
 private final DrawableMap map;
 ...

 /**
 * Marks the locations of all the provided coordinates
 * on the map.
 */
 void markLocationsOnMap(List<LatLong> locations) {
 for (LatLong location in locations) {
 map.markLocation(
 location.getLatitude(),
 location.getLongitude());
 }
 }
}

Using very general, off-the-shelf data types can sometimes seem like a quick and easy
way to represent something. But when we need to represent a specific thing it can
often be better to put in a small amount of extra effort to define a dedicated type for
it. In the mid- to long-run, this usually saves time because the code becomes a lot more
self-explanatory and hard to misuse.

Listing 7.17 Usage of LatLong

Data objects
Defining simple objects that just group data together is a reasonably common task,
and as such a number of languages have features (or add-on utilities) that make this
even easier:

 Kotlin has the concept of data classes, which make it possible to define a
class for containing data using a single line of code: http://mng.bz/O15j.

 In more recent versions of Java, records can be used: https://openjdk
.java.net/jeps/395. For older versions of Java, an alternative is the AutoValue
tool: http://mng.bz/YAaj.

 In various languages (such as C++, C#, Swift, and Rust) it’s possible to define
structs, which can sometimes be more succinct to define than a class.

 In TypeScript it’s possible to define an interface and then use it to provide
compile-time safety for which properties an object must contain: http://
mng.bz/G6PA.

http://mng.bz/O15j
https://openjdk.java.net/jeps/395
https://openjdk.java.net/jeps/395
https://openjdk.java.net/jeps/395
http://mng.bz/YAaj
http://mng.bz/G6PA
http://mng.bz/G6PA

193Dealing with time
7.4 Dealing with time
The previous section discussed how using overly general data types to represent spe-
cific things can lead to code that is easy to misuse. One specific example of this, which
often crops up, is representing time-based concepts.

 Time might seem like a simple thing, but the representation of time is actually
quite nuanced:

 Sometimes we refer to an instant in time, which can be absolute, such as “02:56
UTC July 21, 1969,” or relative, such as “in five minutes’ time.”

 Sometimes we refer to an amount of time, such as “bake in the oven for 30 min-
utes.” Amounts of time can be expressed in one of any number of different
units, such as hours, seconds, or milliseconds.

 To make things even more complicated we also have concepts like time zones,
daylight saving time, leap years, and even leap seconds.

The room for confusion and misusing code when dealing with time is enormous. This
section discusses how we can avoid confusion and misuse by using appropriate data
types and language constructs when dealing with time-based concepts.

7.4.1 Representing time with integers can be problematic

A common way of representing time is to use an integer (or a long integer), which
represents a number of seconds (or milliseconds). This is often used for representing
both instants in time as well as amounts of time:

 An instant in time is often represented as a number of seconds (ignoring leap
seconds) since the unix epoch (00:00:00 UTC on 1 January 1970).

 An amount of time is often represented as a number of seconds (or milliseconds).

An integer is a very general type and can thus make code easy to misuse when used to
represent time like this. We’ll now look at three common ways this can happen.

AN INSTANT IN TIME OR AN AMOUNT OF TIME?
Consider the code in listing 7.18. The sendMessage() function has an integer
parameter named deadline. The documentation for the function explains what the

Proponents of a more traditional take on object-oriented programming sometimes
consider defining data-only objects a bad practice. They argue that data and any func-
tionality that requires that data should be encapsulated together in the same class.

If some data is tightly coupled to a specific piece of functionality, this makes a lot of
sense. But many engineers also recognize that there are scenarios where it’s useful
to group some data together without having to tie it to some specific functionality.
And in this scenario data-only objects can be incredibly useful.

194 CHAPTER 7 Make code hard to misuse
deadline parameter does and that the units are in seconds, but it forgets to mention
what the deadline value actually represents. It’s not clear what should be provided as
an argument to the deadline parameter when the function is called. A couple of
plausible options might be the following:

 The parameter represents an absolute instant in time, and we should provide a
number of seconds since the unix epoch.

 The parameter represents an amount of time. When the function is called, it
will start a timer and the deadline will be passed when this timer hits the speci-
fied number of seconds.

/**
 * @param message The message to send
 * @param deadline The deadline in seconds. If the message
 * has not been sent by the time the deadline is exceeded,
 * then sending will be aborted
 * @return true if the message was sent, false otherwise
 */
Boolean sendMessage(String message, Int64 deadline) {
 ...
}

The documentation is obviously not great if it leaves this much ambiguity. Improving
the documentation would be one way to improve this, but that would pile more stuff
into the small print of the code contract. Small print is not a particularly reliable way
to prevent code from being misused. And considering that this parameter already
requires three lines of documentation to explain it, adding yet more to explain what
the number represents is probably not ideal.

MISMATCHING UNITS

As mentioned at the start of this section, there are many different units for measuring
time. The most common units used in code are usually milliseconds and seconds, but
others (like microseconds) also get used, depending on the context.

 An integer type does absolutely nothing to indicate which units the value is in. We
can indicate the units using a function name, parameter name, or documentation,
but this can often still leave it relatively easy to misuse some code.

 Listing 7.19 shows two different parts of a codebase. The UiSettings.get-
MessageTimeout() function returns an integer representing a number of seconds.
The showMessage() function has a parameter called timeoutMs that represents a
number of milliseconds.

Listing 7.18 Instant in time or amount of time?

Explains what the parameter
does and the units but not
what the value represents

195Dealing with time

class UiSettings {
 ...

 /**
 * @return The number of seconds that UI messages should be
 * displayed for.
 */
 Int64 getMessageTimeout() {
 return 5;
 }
}

...

/**
 * @param message The message to display
 * @param timeoutMs The amount of time to show the message for
 * in milliseconds.
 */
void showMessage(String message, Int64 timeoutMs) {
 ...
}

Despite the documentation (and “Ms” suffix on the timeoutMs parameter name), it’s
quite easy for an engineer to make a mistake when they are plugging these two bits of
code together. The function call in the following snippet doesn’t look obviously wrong,
but it would cause the warning to be displayed for five milliseconds rather than five sec-
onds. This means that the message will disappear before a user has even noticed it.

showMessage("Warning", uiSettings.getMessageTimeout());

MISHANDLING TIME ZONES

A common way to represent an instant in time is as a number of seconds (ignoring leap
seconds) since the unix epoch. This is often referred to as a timestamp and is a very
exact way of identifying precisely when some event has occurred (or will occur). But, as
humans, we often find it desirable to talk about an event in time in a less exact way.

 An example of this is when talking about birthdays. If someone was born on the
2nd of December 1990, we don’t particularly care about the exact instant in time they
were born. Instead, we just care that the calendar day was the 2nd of December and
every year we wish them happy birthday and eat some cake on that day.

 The difference between a date and an instant in time can be a subtle one, but if we’re
not careful to treat them differently it can lead to problems. Figure 7.6 illustrates how
this can go wrong. If a user enters a date (like their birthday) and this is interpreted as
being a date and time within a local time zone, this can lead to a different date being
displayed when a user in a different time zone accesses the information.

Listing 7.19 Mismatch in time units

This part of the
code uses seconds.

This part of the code
uses milliseconds.

196 CHAPTER 7 Make code hard to misuse

Figure 7.6 Not handling time zones properly can easily lead to bugs.

A problem similar to that described in figure 7.6 can also happen in purely server-side
logic if servers are running in different locations and have their systems set to differ-
ent time zones. For example a server in California might save a date value that a differ-
ent server in Europe ends up processing.

 Time-based concepts like instants in time, amounts of time, and dates can be tricky
things to work with at the best of times. But we make our own lives and other engi-
neers’ lives even harder when we try to represent them using a very general type like
an integer. Integers convey very little information about what they mean or represent,
and this can make them very easy to misuse. The next subsection explains how using
more appropriate types can improve code that deals with time.

7.4.2 Solution: Use appropriate data structures for time

As we can see, dealing with time is complicated and nuanced and provides lots of
room for confusion. Most programming languages have some built-in libraries for
handling time, but unfortunately some of these have drawbacks or design issues that
can make them quite error prone. Luckily, for most programming languages with
poor in-built support for time-based concepts, people have built third-party, open-
source libraries to provide a more robust set of utilities. This means there is usually a

Please enter
your birthday

2nd December 1990

Please enter
your birthday

2nd D

User 1 in Berlin (time zone UTC+1)
1990-12-02 00:00:00 UTC+1

1990-12-01 23:00:00 UTC

660092400

User 2 in New York (time zone UTC-5)
660092400

1990-12-01 23:00:00 UTC

1990-12-01 18:00:00 UTC-5

Converted to UTC

Converted to timestamp

Converted to UTC

Converted to local time

Interpreted
in the local
time zone

Displayed
in the local
time zone

Database

User 2 is displayed the incorrect birthday for user 1.

User 1’s
birthday is
User 1’s
birthday is

1st December 1990

197Dealing with time
way to handle time-based concepts in a robust way, but it’s often necessary to put some
effort into finding the best library for the language we’re using. Some examples of
options that are available are as follows:

 In Java, the classes in the java.time package can be used (http://mng.bz/0rPE).
 In C#, the Noda Time library provides a number of utilities for dealing with

time in a robust way (https://nodatime.org).
 In C++, the chrono library can be used (https://en.cppreference.com/w/cpp/

header/chrono).
 In JavaScript, there are a number of third-party libraries to choose from. One

example is the js-joda library (https://js-joda.github.io/js-joda/).

These libraries make the problems discussed in the previous subsection a lot easier to
handle. The following subsections explain some of the ways these libraries can
improve code.

DIFFERENTIATING AN INSTANT IN TIME FROM AN AMOUNT OF TIME
The java.time, Noda Time, and js-joda libraries all provide a class called Instant (for
representing an instant in time) and a separate class called Duration (for represent-
ing an amount of time). Similarly, the C++ chrono library provides a class called
time_point and a separate class called duration.

 Using one of these means that the type of a function parameter dictates whether it
represents an instant in time or an amount of time. For example the sendMessage()
function we saw earlier would look like listing 7.20 if it used a Duration type. It’s now
unmistakably obvious that the value represents an amount of time and not an instant
in time.

/**
 * @param message The message to send
 * @param deadline If the message has not been sent by the time
 * the deadline is exceeded, then sending will be aborted
 * @return true if the message was sent, false otherwise
 */
Boolean sendMessage(String message, Duration deadline) {
 ...
}

NO MORE CONFUSION ABOUT UNITS

The other thing that types like Instant and Duration achieve is that the units are
encapsulated within the type. This means that there is no need for small print in the
contract to explain which units are expected, and it becomes impossible to acciden-
tally provide a value with the incorrect ones. The following snippet demonstrates how
different factory functions can be used to create a Duration using different units.
Regardless of which units are used to create the Duration, it can later be read back as
a number of milliseconds. This allows each part of the code to use whichever units it

Listing 7.20 Using Duration type

The Duration type
makes it clear what the
deadline represents.

http://mng.bz/0rPE
https://nodatime.org
https://en.cppreference.com/w/cpp/header/chrono
https://en.cppreference.com/w/cpp/header/chrono
https://js-joda.github.io/js-joda/

198 CHAPTER 7 Make code hard to misuse
likes without there being a risk of them mismatching when the different pieces of
code interact.

Duration duration1 = Duration.ofSeconds(5);
print(duration1.toMillis()); // Output: 5000

Duration duration2 = Duration.ofMinutes(2);
print(duration2.toMillis()); // Output: 120000

The following listing shows how the problems with the showMessage() function can
be eliminated by using Duration types instead of integers to handle the amount of
time after which the message should timeout.

class UiSettings {
 ...

 /**
 * @return The duration for which the UI messages should be
 * displayed.
 */
 Duration getMessageTimeout() {
 return Duration.ofSeconds(5);
 }
}

...

/**
 * @param message The message to display
 * @param timeout The amount of time to show the message for.
 */
void showMessage(String message, Duration timeout) {
 ...
}

BETTER HANDLING OF TIME ZONES

In the example of representing a birthday we don’t actually care what the time zone is.
But if we want to represent a birthday by linking it to an exact instant in time (using a
timestamp), then we are forced to think carefully about time zones. Luckily, libraries
for handling time often provide a way to represent a date (and time) without having
to link it to an exact instant in time like this. The java.time, Noda Time, and js-joda
libraries all provide a class called LocalDateTime, which achieves exactly this.

 As this section shows, dealing with time can be tricky, and if we’re not careful we
can end up with code that’s too easy to misuse and introduce bugs. Luckily we’re not
the first engineers to face these challenges, and as a result, many libraries already exist
to make dealing with time a lot more robust. We can improve our code by making use
of them.

Listing 7.21 Units encapsulated in Duration type

The Duration type
fully encapsulates
the units.

199Have single sources of truth for data

d
7.5 Have single sources of truth for data
More often than not code deals with data of some kind, be it numbers, strings, or
streams of bytes. Data can often come in two forms:

 Primary data—Things that need to be supplied to the code. There is no way that
the code could work this data out without being told it.

 Derived data—Things that the code can calculate based on the primary data.

An example of this might be the data required to describe the state of a bank account.
There are two pieces of primary data: the amount of credit and the amount of debit. A
piece of derived data that we might want to know is the account balance, which is the
amount of credit minus the amount of debit.

 Primary data usually provides the source of truth for a program. The values for the
credit and debit fully describe the state of an account and are the only things that
need to be stored to keep track of it.

7.5.1 Second sources of truth can lead to invalid states

In the case of the bank account, the value of the account balance is fully constrained by
the two pieces of primary data. It makes no sense to say that the balance is $10 if the
credit is $5 and the debit is $2; it’s logically incorrect. This is a case of having two sources
of “truth” that disagree with one another: the credit and debit values state one thing
(that the balance is $3), while the provided balance value says something else ($10).

 When writing code that deals with both primary and derived data, there can
often be the potential for logically incorrect states like this. If we write code that allows
these logically incorrect states to occur, then it can make it too easy for the code to be
misused.

 Listing 7.22 demonstrates this. The UserAccount class is constructed with values
for the credit, debit, and account balance. As we just saw, the account balance is
redundant information because it can be derived from the credit and debit, so this
class allows callers to instantiate it in a logically incorrect state.

class UserAccount {
 private final Double credit;
 private final Double debit;
 private final Double balance;

 UserAccount(Double credit, Double debit, Double balance) {
 this.credit = credit;
 this.debit = debit;
 this.balance = balance;
 }

 Double getCredit() {
 return credit;
 }

Listing 7.22 Second source of truth for balance

The credit, debit, and
balance are all provide
to the constructor.

200 CHAPTER 7 Make code hard to misuse
 Double getDebit() {
 return debit;
 }

 Double getBalance() {
 return balance;
 }
}

The following snippet shows an example of how the UserAccount class might be
instantiated in an invalid state. An engineer has accidentally calculated the balance as
debit minus credit instead of credit minus debit.

UserAccount account =
 new UserAccount(credit, debit, debit - credit);

We’d hope that testing would spot a bug like this, but if it didn’t it could lead to some
nasty bugs. The bank might end up sending out statements with incorrect balances.
Or internal systems might start doing unpredictable things because of the logically
incorrect values.

7.5.2 Solution: Use primary data as the single source of truth

Because the account balance can be fully derived from the credit and debit, it would be
much better to just calculate it as and when it’s needed. Listing 7.23 shows what the
UserAccount class looks like with this change. The balance is no longer taken as a con-
structor parameter and is not even stored in a member variable. The getBalance()
function simply calculates it on the fly whenever the function is called.

class UserAccount {
 private final Double credit;
 private final Double debit;

 UserAccount(Double credit, Double debit) {
 this.credit = credit;
 this.debit = debit;
 }

 Double getCredit() {
 return credit;
 }

 Double getDebit() {
 return debit;
 }

 Double getBalance() {
 return credit - debit;
 }
}

Listing 7.23 Calculating balance on the fly

Balance provided as
debit minus credit,
which is incorrect

The balance is calculated
from the credit and debit.

201Have single sources of truth for data
The example of the bank account balance is pretty simple, and most engineers would
likely spot the fact that providing the balance is redundant given that it can be derived
from the credit and debit. But more complicated situations that are analogous to this
can often crop up and be harder to spot. It’s well worth taking the time to think about
any data models we might be defining and whether they allow any logically incorrect
states to exist.

WHEN DERIVING DATA IS EXPENSIVE

Calculating an account balance from the credit and debit is trivially simple and not at
all computationally expensive. But sometimes it can be a lot more expensive to calcu-
late a derived value. Imagine that instead of having single values for the credit and
debit, we instead have a list of transactions. Now the list of transactions is the primary
data and the total credit and debit are derived data. But calculating this derived data is
now quite expensive because it requires traversing a whole list of transactions.

 If calculating a derived value is expensive like this, it can often be a good idea to cal-
culate it lazily and cache the result. Calculating something lazily means that we put off
doing the work until we absolutely have to (just like being lazy in real life). Listing 7.24
shows what the UserAccount class looks like with these changes. The cachedCredit
and cachedDebit member variables start off as null but are populated with values if
and when the getCredit() and getDebit() functions are called respectively.

 The cachedCredit and cachedDebit member variables store derived informa-
tion, so they are in effect a second source of truth. In this situation this is OK, because
this second source of truth is fully contained within the UserAccount class and the
class and list of transactions are both immutable. This means we know that the
cachedCredit and cachedDebit variables will be in agreement with the transac-
tions list and that this will never change.

class UserAccount {
 private final ImmutableList<Transaction> transactions;

 private Double? cachedCredit;
 private Double? cachedDebit;

 UserAccount(ImmutableList<Transaction> transactions) {
 this.transactions = transactions;
 }

 ...

 Double getCredit() {
 if (cachedCredit == null) {
 cachedCredit = transactions
 .map(transaction -> transaction.getCredit())
 .sum();
 }
 return cachedCredit;
 }

Listing 7.24 Lazy calculation and caching

Member variables to store cached
values for the credit and debit

Credit is calculated
(and cached) if it’s
not already cached.

202 CHAPTER 7 Make code hard to misuse
 Double getDebit() {
 if (cachedDebit == null) {
 cachedDebit = transactions
 .map(transaction -> transaction.getDebit())
 .sum();
 }
 return cachedDebit;
 }

 Double getBalance() {
 return getCredit() - getDebit();
 }
}

If a class is not immutable, then things get a lot more complicated: we have to make sure
the cache variables are reset to null whenever the class is mutated. This can get quite fid-
dly and error prone, so this is another strong argument for making things immutable.

7.6 Have single sources of truth for logic
Sources of truth don’t just apply to data provided to the code; they apply to the logic
within the code as well. There are many scenarios where something that one piece of
code does needs to match something that another piece of code does. If the two pieces
of code don’t match one another, the software will stop functioning properly. It’s there-
fore important to ensure that there is a single source of truth for logic like this.

7.6.1 Multiple sources of truth for logic can lead to bugs

Listing 7.25 shows a class that can be used to log some integer values and then save
them to a file. There are two important details in this code about how the values are
stored in the file:

1 Each value is converted into a string format (using a base-10 radix).
2 The strings for each value are then joined together with a comma separating

them.

class DataLogger {
 private final List<Int> loggedValues;
 ...

 saveValues(FileHandler file) {
 String serializedValues = loggedValues
 .map(value -> value.toString(Radix.BASE_10))
 .join(",");
 file.write(serializedValues);
 }
}

Listing 7.25 Code to serialize and save values

Debit is calculated
(and cached) if it’s
not already cached.

Calculates the balance using
potentially cached values

The values are
converted to strings
using a base-10 radix.

The values are joined together
with comma separation.

203Have single sources of truth for logic
It’s very likely that there is some other code, somewhere else, that is used to read files
and parse integers from them (the reverse process of what DataLogger.save-
Values() does). Listing 7.26 shows the code that does this. This code is in a completely
different file (and potentially a different part of the codebase) to the DataLogger
class, but the logic needs to match. In particular, to successfully parse the values from
the contents of a file, the following steps need to be performed:

1 The string needs to be split into a list of strings on the comma character.
2 Each string in the list needs to be parsed into an integer (using a base-10 radix).

class DataLoader {
 ...

 List<Int> loadValues(FileHandler file) {
 return file.readAsString()
 .split(",")
 .map(str -> Int.parse(str, Radix.BASE_10));
 }
}

NOTE: ERROR HANDLING There are obviously considerations around error han-
dling when it comes to writing data to a file or reading and parsing data from
a file. Listings 7.25 and 7.26 omit these for the sake of brevity, but in real life
we’d probably want to consider using one of the techniques discussed in
chapter 4 to signal when writing to or reading from a file fails, or when strings
cannot be parsed into integers.

In this scenario, the format in which values are stored in a file is a critical piece of
logic, but there are two sources of truth for what this format is. Both the DataLogger
and DataLoader classes independently contain logic that specify the format. When
the classes both contain the same logic everything works fine, but if one is modified
and the other is not, problems will arise.

 Some potential changes that an engineer might make to the logic are as follows. If
the engineer made one of these changes to the DataLogger class but not the Data-
Loader class, then things would go wrong.

 An engineer decides that it would be better to store values using hexadecimal
instead of base-10 to save space (meaning the file would contain strings like
“7D” instead of “125”).

 An engineer decides that it would be better to separate values using a new line
instead of a comma to make the files more human readable.

Having two sources of truth for logic can easily cause problems whenever an engineer
modifies one of them without realizing that they also need to modify the other.

Listing 7.26 Code to read and deserialize values

File contents are split
into a list of strings.

Each string is parsed
into an integer using a
base-10 radix.

204 CHAPTER 7 Make code hard to misuse
7.6.2 Solution: Have a single source of truth

Chapter 2 discussed how a given piece of code will usually solve a high-level problem
by breaking it down into a series of subproblems. The DataLogger and DataLoader
classes both solve a high-level problem: logging data and loading data respectively. But
in doing so they both need to solve the subproblem of what format should be used to
store a list of serialized integers in a file.

 Figure 7.7 illustrates how the DataLogger and DataLoader classes are both solv-
ing one of the same subproblems (the format for storing serialized integers). But
rather than solving this problem once and both making use of that single solution,
each class contains its own logic for solving it.

Figure 7.7 The format for storing serialized integers is a subproblem that is common to both
the DataLogger and DataLoader classes. But rather than sharing the same solution, they
each contain their own logic to solve it.

We could make the code more robust and less likely to be broken by having a single
source of truth for the format for storing serialized integers. We can achieve this by
making the serialization and deserialization of a list of integers be a single, reusable
layer of code.

 Listing 7.27 shows one way of doing this by defining a class called IntList-
Format, which contains two functions: serialize() and deserialize(). All the
logic related to the format for storing serialized integers is now contained within a sin-
gle class that provides a single source of truth. Another detail to notice is that the

Logging some
values to a file

Serializing a list
of integers

Loading some
values from a file

Deserializing a list
of integers

Format for storing
serialized integers

Format for storing
serialized integers

The format for storing serialized integers is the same subproblem,
but in the code it is repeated as two separate subproblems. This
means the logic can easily get out of sync and cause problems.

DataLoader class

High-level problem

Subproblems

DataLogger class

205Have single sources of truth for logic
comma delimiter and radix are each specified once in a constant so that there is a sin-
gle source of truth for these, even within the class.

class IntListFormat {
 private const String DELIMITER = ",";
 private const Radix RADIX = Radix.BASE_10;

 String serialize(List<Int> values) {
 return values
 .map(value -> value.toString(RADIX))
 .join(DELIMITER);
 }

 List<Int> deserialize(String serialized) {
 return serialized
 .split(DELIMITER)
 .map(str -> Int.parse(str, RADIX));
 }
}

Listing 7.28 shows what the DataLogger and DataLoader classes now look like if
they both make use of the IntListFormat class to do the serialization and deserial-
ization. All the details of how to serialize and deserialize a list of integers to and from
a string are now handled by the IntListFormat class.

class DataLogger {
 private final List<Int> loggedValues;
 private final IntListFormat intListFormat;
 ...
 saveValues(FileHandler file) {
 file.write(intListFormat.serialize(loggedValues));
 }
}

...

class DataLoader {
 private final IntListFormat intListFormat;
 ...
 List<Int> loadValues(FileHandler file) {
 return intListFormat.deserialize(file.readAsString());
 }
}

Figure 7.8 illustrates how the high-level problems and subproblems are now broken
up between the layers of code. We can see that the IntListFormat class now pro-
vides the single source of truth for the format for storing serialized integers. This

Listing 7.27 IntListFormat class

Listing 7.28 DataLogger and DataLoader

The delimiter and radix
are specified in constants.

IntListFormat
class used to solve
the subproblem

206 CHAPTER 7 Make code hard to misuse
almost entirely eliminates the risk that an engineer might change the format used by
the DataLogger class and inadvertently forget to change the one used by the Data-
Loader class.

Figure 7.8 The IntListFormat class provides a single source of truth for the format for storing
serialized integers.

When the logic performed by two different pieces of code need to match, we
shouldn’t leave it to chance that they do. Engineers working on one part of the code-
base may not be aware of an assumption made by some code in another part of the
codebase. We can make code a lot more robust by ensuring that important pieces of
logic have a single source of truth. This almost entirely eliminates the risk of bugs
caused by different pieces of code getting out of sync with one another.

Summary
 If code is easy to misuse, then there is a high chance that at some point it will be

misused. This can lead to bugs.
 Some common ways in which code can be misused are the following:

– Callers providing invalid inputs
– Side effects from other pieces code
– Callers not calling functions at the correct times or in the correct order
– A related piece of code being modified in a way that breaks an assumption

 It’s often possible to design and structure code in a way that makes it hard or
impossible to misuse. This can greatly reduce the chance of bugs and save engi-
neers a lot of time in the mid- to long-term.

Logging some
values to a file

Serializing a list
of integers

Loading some
values from a file

Deserializing a list
of integers

Format for storing
serialized integers

DataLoader class

High-level problem

Subproblems

DataLogger class

IntListFormat class

Make code modular
Chapter 1 discussed how requirements often evolve over the lifetime of a piece of
software. In many cases they evolve even before the software is released, so it’s not
uncommon to write some code and then have to adapt it only a few weeks or
months later. Trying to predict exactly how requirements will evolve is usually a
waste of time, because it’s near impossible to do this with any accuracy. But we can
usually be more or less certain that they will evolve in some way.

 One of the main aims of modularity is to create code that can be easily adapted
and reconfigured, without having to know exactly how it will need to be adapted or
reconfigured. A key goal in achieving this is that different pieces of functionality
(or requirements) should map to distinct parts of the codebase. If we achieve this,
and later on one of the software requirements changes, we should need to make
nontrivial changes to only the single place in the codebase that relates to that
requirement or feature.

This chapter covers
 The benefits of modular code

 Common ways code can be less modular than is
ideal

 How to make code more modular
207

208 CHAPTER 8 Make code modular
 This chapter builds heavily on the idea of clean layers of abstraction (which was
discussed in chapter 2). Making code modular often comes down to ensuring that the
nuts-and-bolts details of solutions to subproblems are each self-contained and not
tightly coupled to one another. In addition to making code more adaptable, this also
tends to make software systems easier to reason about. And as we’ll see in chapters 9,
10, and 11, it also tends to make code more reusable and more testable, so making
code modular has a number of benefits.

8.1 Consider using dependency injection
It’s common for classes to depend on other classes. Chapter 2 showed how code often
solves a high-level problem by breaking it down into subproblems. In well-structured
code, each of these subproblems is often solved by a dedicated class. There is not
always a single solution to a subproblem however, so it can be useful to structure code
in a way that allows solutions to subproblems to be reconfigured. Dependency injec-
tion can help us achieve this.

8.1.1 Hard-coded dependencies can be problematic

Listing 8.1 shows some of the code in a class that implements a route planner for car
journeys. The RoutePlanner class depends on an instance of RoadMap. RoadMap is an
interface with potentially many different implementations (one for each geographical
region). But in this example, the RoutePlanner class constructs a NorthAmerica-
RoadMap in its constructor, meaning it has a hard-coded dependency on a specific
implementation of RoadMap. This means that the RoutePlanner class can be used
only for planning journeys in North America. It’s completely useless for planning jour-
neys in any other part of the world.

class RoutePlanner {
 private final RoadMap roadMap;

 RoutePlanner() {
 this.roadMap = new NorthAmericaRoadMap();
 }

 Route planRoute(LatLong startPoint, LatLong endPoint) {
 ...
 }
}

interface RoadMap {
 List<Road> getRoads();
 List<Junction> getJunctions();
}

class NorthAmericaRoadMap implements RoadMap {
 ...
 override List<Road> getRoads() { ... }
 override List<Junction> getJunctions() { ... }
}

Listing 8.1 A hard-coded dependency

RoutePlanner
depends on RoadMap.

RoutePlanner class constructs
a NorthAmericaRoadMap.

RoadMap is
an interface.

NorthAmericaRoadMap is one
of potentially many
implementations of RoadMap.

209Consider using dependency injection
Baking in a dependency on a specific implementation of RoadMap makes it impossi-
ble to reconfigure the code with a different implementation. But this is not the only
problem with hard coding a dependency like this. Imagine if the NorthAmerica-
RoadMap class were modified and now required some constructor parameters. Listing
8.2 shows what the NorthAmericaRoadMap class now looks like. It accepts two param-
eters to its constructor:

 The useOnlineVersion parameter controls whether the class will try to con-
nect to a server to get the most up-to-date version of the map.

 The includeSeasonalRoads parameter controls whether the map includes
roads that are open only at certain times of the year.

class NorthAmericaRoadMap implements RoadMap {
 ...

 NorthAmericaRoadMap(
 Boolean useOnlineVersion,
 Boolean includeSeasonalRoads) { ... }

 override List<Road> getRoads() { ... }
 override List<Junction> getJunctions() { ... }
}

The knock-on effect of this is that the RoutePlanner class can’t construct an instance
of NorthAmericaRoadMap without providing these values. This forces the Route-
Planner class to now handle concepts specific to the NorthAmericaRoadMap class:
whether to connect to a server to get an up-to-date map and whether to include sea-
sonal roads. This starts to make the layers of abstraction messy and can even further
limit the adaptability of the code. Listing 8.3 shows what the RoutePlanner class
might now look like. It now hard codes that the map will use an online version and
that it won’t include seasonal roads. These are kind of arbitrary decisions and make
the scenarios in which the RoutePlanner class can be used even more limited. It’s
now useless whenever there isn’t an internet connection or whenever seasonal roads
are required.

class RoutePlanner {
 private const Boolean USE_ONLINE_MAP = true;
 private const Boolean INCLUDE_SEASONAL_ROADS = false;

 private final RoadMap roadMap;

 RoutePlanner() {
 this.roadMap = new NorthAmericaRoadMap(
 USE_ONLINE_MAP, INCLUDE_SEASONAL_ROADS);
 }

Listing 8.2 A configurable dependency

Listing 8.3 Configuring a hard-coded dependency

Constructor
arguments for
NorthAmericaRoad
Map are baked in.

210 CHAPTER 8 Make code modular
 Route planRoute(LatLong startPoint, LatLong endPoint) {
 ...
 }
}

The RoutePlanner class has one thing going for it: it’s very easy to construct. Its con-
structor takes no parameters, and as such, callers don’t have to worry about providing
any configuration. The downside, however, is that the RoutePlanner class is not very
modular and not very versatile. It’s hard coded to use a road map of North America,
will always try to connect to an online version of the map, and will always exclude sea-
sonal roads. This is probably not ideal, as we’re quite likely to have some users outside
of North America, and we might also want our application to work even when the user
is offline.

8.1.2 Solution: Use dependency injection

We can make the RoutePlanner class a lot more modular and versatile if we allow it
to be constructed with different road maps. We can achieve this by injecting a RoadMap
by providing it via a parameter in the constructor. This removes the need for the
RoutePlanner class to have a hard-coded dependency on a particular road map and
means that we can configure it with any road map we like. The following listing shows
how the RoutePlanner class looks with this change.

class RoutePlanner {
 private final RoadMap roadMap;

 RoutePlanner(RoadMap roadMap) {
 this.roadMap = roadMap;
 }

 Route planRoute(LatLong startPoint, LatLong endPoint) {
 ...
 }
}

Now engineers can construct an instance of RoutePlanner using any road map they
like. Some examples of how engineers might now use the RoutePlanner class are the
following:

RoutePlanner europeRoutePlanner =
 new RoutePlanner(new EuropeRoadMap());

RoutePlanner northAmericaRoutePlanner =
 new RoutePlanner(new NorthAmericaRoadMap(true, false));

The downside of injecting the RoadMap like this is that the RoutePlanner class is now
more complicated to construct. An engineer now has to construct an instance of
RoadMap before they can construct a RoutePlanner. We can make this a lot easier by

Listing 8.4 Dependency injection

A RoadMap is injected
via the constructor.

211Consider using dependency injection

providing some factory functions that other engineers can use. Listing 8.5 shows what
these might look like. The createDefaultNorthAmericaRoutePlanner() func-
tion constructs a RoutePlanner with a NorthAmericaRoadMap using some “sensi-
ble” default values. This can make it easy for engineers to quickly create a Route-
Planner that probably does what they need, but without preventing anyone with a dif-
ferent use case from using RoutePlanner with a different road map, so for the default
use case RoutePlanner is almost as easy to use as it was in the previous subsection, but
it is now adaptable to other use cases too.

class RoutePlannerFactory {
 ...

 static RoutePlanner createEuropeRoutePlanner() {
 return new RoutePlanner(new EuropeRoadMap());
 }

 static RoutePlanner createDefaultNorthAmericaRoutePlanner() {
 return new RoutePlanner(
 new NorthAmericaRoadMap(true, false));
 }
}

An alternative to manually writing factory functions is to use a dependency injection
framework.

DEPENDENCY INJECTION FRAMEWORKS

We’ve seen that dependency injection can make classes more configurable, but that it
can also have the downside of making them more complicated to construct. We can
use manually coded factory functions to alleviate this, but if we end up with a lot of
these it can get a bit laborious and lead to a lot of boilerplate code.

 We can make life easier by using a dependency injection framework, which auto-
mates a lot of the work. There are many different dependency injection frameworks
around, and whichever language you are using, you will probably have more than a
few to choose from. Because there are so many, and because they are so language spe-
cific, we won’t go into too many details here. The main point to take away is that
dependency injection frameworks can enable us to create very modular and versatile
code without drowning in loads of factory function boilerplate. It’s well worth looking
up what options are available for the language you’re using and deciding if it’s some-
thing that could be useful.

 As a note of caution, even engineers who love dependency injection are not always
fans of dependency injection frameworks. If not used carefully, they can result in code
that can be hard to reason about. This can be because it becomes hard to figure out
which pieces of configuration for the framework apply to which pieces of the code. If
you do choose to use a dependency injection framework, then it’s worth reading up
on the best practices to avoid any potential pitfalls.

Listing 8.5 Factory functions

Constructs a NorthAmericaRoadMap
with some “sensible” defaults

212 CHAPTER 8 Make code modular
8.1.3 Design code with dependency injection in mind

When writing code, it can often be beneficial to consciously consider that we might
want to use dependency injection. There are ways of writing code that make it near
impossible to use dependency injection, so if we know we might want to inject a
dependency, it’s best to avoid these.

 To demonstrate this, let’s consider another way an engineer might implement the
RoutePlanner and road map example. Listing 8.6 shows this. The NorthAmerica-
RoadMap class now contains static functions (rather than ones that are called via an
instance of the class). This means that the RoutePlanner class doesn’t depend on an
instance of the NorthAmericaRoadMap class; it instead depends directly on the static
functions NorthAmericaRoadMap.getRoads() and NorthAmericaRoadMap.get-
Junctions(). This exhibits the same problem that we saw at the start of this section:
there’s no way to use the RoutePlanner class with anything other than a North
American road map. But the problem is now even worse because we can’t solve this by
modifying the RoutePlanner class to use dependency injection even if we want to.

 Previously, when the RoutePlanner class was creating an instance of North-
AmericaRoadMap in its constructor, we were able to improve the code by using depen-
dency injection to instead inject an implementation of RoadMap. But now we can’t do
this, because the RoutePlanner class doesn’t depend on an instance of RoadMap; it
instead depends directly on the static functions within the NorthAmericaRoadMap
class.

class RoutePlanner {

 Route planRoute(LatLong startPoint, LatLong endPoint) {
 ...
 List<Road> roads = NorthAmericaRoadMap.getRoads();
 List<Junction> junctions =
 NorthAmericaRoadMap.getJunctions();
 ...
 }
}

class NorthAmericaRoadMap {
 ...
 static List<Road> getRoads() { ... }

 static List<Junction> getJunctions() { ... }
}

When we’re writing code to solve a subproblem it can be easy to assume that it’s the only
solution to the problem that anyone would ever want. If we’re in this mind-set, it can
often seem that the most obvious thing to do is simply create a static function. For really

Listing 8.6 Depending on static functions

Calls to static functions
on the NorthAmerica-
RoadMap class

Static
functions

213Prefer depending on interfaces
fundamental subproblems with only one solution this is usually fine. But for subprob-
lems that higher layers of code might want to reconfigure, this can be problematic.

NOTE: STATIC CLING An overreliance of static functions (or variables) is often
referred to as static cling. The potential problems with this are well known and
well documented. It can be especially problematic when unit testing code
because it can make it impossible to use test doubles (covered in chapter 10).

Chapter 2 discussed how it’s often good to define an interface if there is more than one
potential solution to a subproblem. In this case, the road map solves a subproblem, and
it’s not hard to imagine that code (or tests) might sometimes want different solutions
to that subproblem for different geographical areas (or different test scenarios).
Because we can foresee this as a likely eventuality, it’s probably better to define an inter-
face for a road map and make the NorthAmericaRoadMap a class that implements it
(which also means making the functions non-static). If we do this, we end up with the
code we saw earlier (repeated in listing 8.7). This means that anyone using a RoadMap
can use dependency injection and make their code adaptable if they want to.

interface RoadMap {
 List<Road> getRoads();
 List<Junction> getJunctions();
}

class NorthAmericaRoadMap implements RoadMap {
 ...
 override List<Road> getRoads() { ... }
 override List<Junction> getJunctions() { ... }
}

Dependency injection can be an excellent way to make code modular and ensure that
it can be adapted to different use cases. Whenever we’re dealing with subproblems that
might have alternative solutions, this can be particularly important. Even when this isn’t
the case, dependency injection can still be useful. Chapter 9 will show how it can help
us avoid global state. And chapter 11 will explore how it can make code more testable.

8.2 Prefer depending on interfaces
The previous section demonstrated the benefits of using dependency injection: it
allows the RoutePlanner class to be more easily reconfigured. But this is only possible
because all the different road map classes implement the same RoadMap interface,
meaning the RoutePlanner class can depend on this. This allows any implementation
of RoadMap to be used, making the code considerably more modular and adaptable.

 This leads us to a more general technique for making code more modular and
easy to adapt: if we’re depending on a class that implements an interface and that

Listing 8.7 An instantiable class

RoadMap is
an interface.

NorthAmericaRoadMap is one
of potentially many
implementations of RoadMap.

214 CHAPTER 8 Make code modular
interface captures the functionality that we need, then it’s usually better to depend on
that interface rather than directly on the class. The previous section already hinted at
this, but we’ll now look at it more explicitly.

8.2.1 Depending on concrete implementations limits adaptability

Listing 8.8 shows what the RoutePlanner class (from the previous section) would look
like if it used dependency injection but depended directly on the NorthAmerica-
RoadMap class rather than the RoadMap interface.

 We still get some of the benefits of dependency injection: the RoutePlanner class
doesn’t have to know anything about how to construct a NorthAmericaRoadMap. But
we miss out on one of the major advantages of using dependency injection: we can’t
use the RoutePlanner class with other implementations of RoadMap.

interface RoadMap {
 List<Road> getRoads();
 List<Junction> getJunctions();
}

class NorthAmericaRoadMap implements RoadMap {
 ...
}

class RoutePlanner {
 private final NorthAmericaRoadMap roadMap;

 RoutePlanner(NorthAmericaRoadMap roadMap) {
 this.roadMap = roadMap;
 }

 Route planRoute(LatLong startPoint, LatLong endPoint) {
 ...
 }
}

We already established in the previous section how it’s highly likely that we might have
some users outside of North America, so having a RoutePlanner class that doesn’t
work in any other geographical location is less than ideal. It would be better if the
code could work with any road map.

8.2.2 Solution: Depend on interfaces where possible

Depending on concrete implementation classes often limits adaptability compared to
depending on an interface. We can think of an interface as providing a layer of
abstraction for solving a subproblem. A concrete implementation of that interface
provides a less abstract and more implementation-focused solution to the subprob-
lem. Depending on the more abstract interface will usually achieve cleaner layers of
abstraction and better modularity.

Listing 8.8 Depending on a concrete class

The RoadMap
interface

NorthAmericaRoadMap
implements the
RoadMap interface.

Depends directly on the
NorthAmericaRoadMap class

215Beware of class inheritance
 In the case of the RoutePlanner class, this means that we depend on the RoadMap
interface instead of directly on the NorthAmericaRoadMap class. If we do this, then we
arrive back at the same code we had in section 8.1.2 (repeated in listing 8.9). Engineers
can now construct an instance of RoutePlanner with any road map they like.

class RoutePlanner {
 private final RoadMap roadMap;

 RoutePlanner(RoadMap roadMap) {
 this.roadMap = roadMap;
 }

 Route planRoute(LatLong startPoint, LatLong endPoint) {
 ...
 }
}

Chapter 2 talked about the usage of interfaces, and in particular how it’s often useful
to define an interface when there might be more than one way of solving the given
subproblem. It’s exactly for scenarios like the one in this section that this advice exists.
If a class implements an interface and that interface captures the behavior we need,
then it’s a strong hint that other engineers might want to use our code with different
implementations of that interface. Depending on the interface rather than a specific
class is rarely any more effort but makes the code considerably more modular and
adaptable.

NOTE: THE DEPENDENCY INVERSION PRINCIPLE The idea that it’s better to depend
on abstractions as opposed to more concrete implementations is central to the
dependency inversion principle.1 A more detailed description of this design princi-
ple can be found at https://stackify.com/dependency-inversion-principle/.

8.3 Beware of class inheritance
One of the defining features of most object-oriented programming languages is that
they allow one class to inherit from another. A somewhat canonical example of this is
modeling a hierarchy of vehicles using classes (figure 8.1). Both cars and trucks are a
type of vehicle, so we might define a Vehicle class to provide functionality common
to all vehicles and then define Car and Truck classes that both inherit from the
Vehicle class. In turn, any class representing a specific type of car might inherit from
the Car class. This forms a class hierarchy.

Listing 8.9 Depending on an interface

1 The dependency inversion principle is often associated with Robert C. Martin. It’s one of the five SOLID
design principles promoted by Martin (SOLID is an acronym coined by Michael Feathers, and the D stands
for dependency inversion principle). See http://mng.bz/K4Pg.

Depends on the
RoadMap interface

http://mng.bz/K4Pg
https://stackify.com/dependency-inversion-principle/

216 CHAPTER 8 Make code modular
Figure 8.1 Classes can inherit from one another, forming a class hierarchy.

Class inheritance certainly has its uses and is sometimes the right tool for the job.
When two things have a genuine is-a relationship (e.g., a car is a vehicle) this can be a
sign that inheritance might be appropriate (although see the caveats in section 8.3.3).
Inheritance is a powerful tool, but it can also have several drawbacks and be quite
unforgiving in terms of the problems it causes, so it’s usually worth thinking carefully
before writing code where one class inherits from another.

 In many scenarios, an alternative to using inheritance is to use composition. This
means that we compose one class out of another by containing an instance of it rather
than extending it. This can often avoid some of the pitfalls of inheritance and result in
code that is more modular and more robust. This section demonstrates some of the
problems that inheritance can cause and how composition can be a better alternative.

8.3.1 Class inheritance can be problematic

The vehicle and car example shows what we mean by class inheritance, but it’s a bit
too abstract to demonstrate some of the pitfalls that engineers usually encounter, so
we’ll consider a more realistic scenario where an engineer might be tempted to use
class inheritance. Let’s assume that we have been asked to write a class that will read
integers one by one from a file that contains comma-separated values. We think about
this and identify the following subproblems:

 We must read data from a file.
 We must split the comma-separated contents of the file into individual strings.
 We must parse each of these strings into an integer.

NOTE: ERRORS We’ll ignore error scenarios for the sake of this example (such
as the file not being accessible or containing invalid data). In real life we’d
probably want to consider these and use one of the techniques from chapter 4.

We notice that the first two of these subproblems have already been solved by an exist-
ing class called CsvFileHandler (shown in listing 8.10). This class opens a file and

Vehicle

Car Truck

FordMustang Volvo240

Extends

Extends Extends

Extends

By “extending” the Vehicle class,
the Car class “inherits” from it.

By “extending” the Car class, the
Volvo240 class “inherits” from both
the Car class and the Vehicle class.

217Beware of class inheritance
allows us to read the comma-separated strings one by one from it. The CsvFile-
Handler class implements two interfaces: FileValueReader and FileValue-
Writer. We need only the functionality captured by the FileValueReader interface,
but as we’ll see in a moment, class inheritance doesn’t allow us to depend on an inter-
face like this.

interface FileValueReader {
 String? getNextValue();
 void close();
}

interface FileValueWriter {
 void writeValue(String value);
 void close();
}

/**
 * Utility for reading and writing from/to a file containing
 * comma-separated values.
 */
class CsvFileHandler
 implements FileValueReader, FileValueWriter {
 ...

 CsvFileReader(File file) { ... }

 override String? getNextValue() { ... }

 override void writeValue(String value) { ... }

 override void close() { ... }
}

In order to use the CsvFileHandler class to help us solve our high-level problem, we
have to incorporate it into our code somehow. Listing 8.11 shows how our code might
look if we used inheritance to do this. Some things to notice about the code are as
follows:

 The IntFileReader class extends the CsvFileHandler class, meaning that
IntFileReader is a subclass of CsvFileHandler, or to put it another way,
CsvFileHandler is a superclass of IntFileReader.

 The IntFileReader constructor has to instantiate the CsvFileHandler
superclass by calling its constructor. It does this by calling super().

 Code within the IntFileReader class has access to functions from the Csv-
FileHandler superclass as though they were part of the IntFileReader
class, so a call to getNextValue() from within the IntFileReader class calls
this function on the superclass.

Listing 8.10 Class that reads a CSV file

Reads the comma-separated
strings from the file one by one

218 CHAPTER 8 Make code modular
/**
 * Utility for reading integers from a file one by one. The
 * file should contain comma-separated values.
 */
class IntFileReader extends CsvFileHandler {
 ...

 IntFileReader(File file) {
 super(file);
 }

 Int? getNextInt() {
 String? nextValue = getNextValue();
 if (nextValue == null) {
 return null;
 }
 return Int.parse(nextValue, Radix.BASE_10);
 }
}

One of the key features of inheritance is that a subclass will inherit all the functional-
ity provided by the superclass, so any code that has an instance of IntFileReader
can call any of the functions provided by CsvFileHandler, such as the close()
function. An example usage of the IntFileReader class might look like this:

IntFileReader reader = new IntFileReader(myFile);
Int? firstValue = reader.getNextInt();
reader.close();

As well as having access to the close() function, any code with an instance of Int-
FileReader will also have access to all the other functions from CsvFileHandler,
such as getNextValue() and writeValue(), which, as we will see in a moment, can
be problematic.

INHERITANCE CAN PREVENT CLEAN LAYERS OF ABSTRACTION

When one class extends another class it inherits all the functionality of the superclass.
This is sometimes useful (as in the case of the close() function) but can also end up
exposing more functionality than we’d ideally like to. This can lead to messy layers of
abstraction and the leaking of implementation details.

 To demonstrate this, let’s consider what the API for the IntFileReader class
looks like if we explicitly show both the functions it provides as well as those that it
inherits from the CsvFileHandler superclass. Listing 8.12 shows what the API of
IntFileReader effectively looks like. We can see that any users of the IntFile-
Reader class can call the getNextValue() and writeValue() functions if they
want to. For a class that claims to just read integers from a file, these are very strange
functions to have in the public API.

Listing 8.11 Class inheritance

IntFileReader (subclass)
extends CsvFileHandler
(superclass).

The IntFileReader
constructor calls the
superclass constructor.

Calls the getNextValue()
function from the superclass

219Beware of class inheritance

class IntFileReader extends CsvFileHandler {
 ...

 Int? getNextInt() { ... }

 String? getNextValue() { ... }
 void writeValue(String value) { ... }
 void close() { ... }
}

If a class’s API exposes some functionality, then we should expect that at least some
engineers will make use of this functionality. After a few months or years, we may find
that the getNextValue() and writeValue() functions are being called in multiple
places through the codebase. This will make it very difficult to ever change the imple-
mentation of the IntFileReader class in the future. The use of CsvFileHandler
should really be an implementation detail, but by using inheritance we’ve accidentally
made it part of the public API.

INHERITANCE CAN MAKE CODE HARD TO ADAPT

When we implemented the IntFileReader class, the problem we’d been asked to
solve was reading integers from a file containing comma-separated values. Imagine
that there is now a requirement that, in addition to this, we now also need to provide
a way to read integers from files containing semicolon-separated values.

 Once again we notice that there is already a solution for reading strings from a file
containing semicolon-separated values. An engineer has already implemented a class
called SemicolonFileHandler (shown in listing 8.13). This class implements
exactly the same interfaces as the CsvFileHandler class: FileValueReader and
FileValueWriter.

/**
 * Utility for reading and writing from/to a file containing
 * semicolon-separated values.
 */
class SemicolonFileHandler
 implements FileValueReader, FileValueWriter {
 ...

 SemicolonFileHandler(File file) { ... }

 override String? getNextValue() { ... }

 override void writeValue(String value) { ... }

 override void close() { ... }
}

Listing 8.12 The public API of IntFileReader

Listing 8.13 Class that reads a semicolon-separated file

Functions inherited
from superclass

Implements the same
interfaces as the
CsvFileHandler class

220 CHAPTER 8 Make code modular
The problem we need to solve is almost identical to the problem that we’ve already
solved, but with one tiny difference: we sometimes need to use SemicolonFile-
Handler instead of CsvFileHandler. We would hope that such a small change in
requirements would result in only a small change in the code, but unfortunately if we
use inheritance this might not be the case.

 The requirement is that in addition to handling comma-separated file contents, we
need to also handle semicolon-separated contents, so we can’t simply switch Int-
FileReader to inherit from SemicolonFileHandler instead of CsvFileHandler
because this would break that existing functionality. Our only option is to write a new,
separate version of the IntFileReader class that inherits from SemicolonFile-
Handler. Listing 8.14 shows what this would look like. The new class is named
SemicolonIntFileReader, and it’s a near duplicate of the original IntFile-
Reader class. Code duplication like this is usually not good because it increases main-
tenance overhead as well as the chances of bugs (as discussed in chapter 1).

/**
 * Utility for reading integers from a file one by one. The
 * file should contain semicolon-separated values.
 */
class SemicolonIntFileReader extends SemicolonFileHandler {
 ...

 SemicolonIntFileReader(File file) {
 super(file);
 }

 Int? getNextInt() {
 String? nextValue = getNextValue();
 if (nextValue == null) {
 return null;
 }
 return Int.parse(nextValue, Radix.BASE_10);
 }
}

The fact that we have to duplicate so much code is particularly frustrating when we
consider that both the CsvFileHandler and SemicolonFileHandler classes
implement the FileValueReader interface. This interface provides a layer of
abstraction for reading values without having to know the file format. But because we
used inheritance, we’re not able to make use of this layer of abstraction. We’ll see in a
moment how composition can solve this.

8.3.2 Solution: Use composition

Our original motivation for using inheritance was that we wanted to reuse some of the
functionality from the CsvFileHandler class to help us implement the Int-
FileReader class. Inheritance is one way to achieve this, but as we just saw, it can

Listing 8.14 SemicolonIntFileReader class

221Beware of class inheritance
have several drawbacks. An alternative way to reuse the logic from CsvFileHandler
would be to use composition. This means that we compose one class out of another by
containing an instance of it rather than extending it.

 Listing 8.15 shows how our code might look if we use composition. Some things to
notice about the code are as follows:

 As mentioned previously, the FileValueReader interface captures the func-
tionality we care about, so rather than using the CsvFileHandler class
directly, we use the FileValueReader interface. This ensures cleaner layers of
abstraction and makes the code easier to reconfigure.

 Instead of extending the CsvFileHandler class, the IntFileReader class
holds an instance of FileValueReader. In this sense the IntFileReader
class is composed of an instance of the FileValueReader (thus why we call it
composition).

 An instance of FileValueReader is dependency injected via the IntFile-
Reader class’s constructor (this was covered in section 8.1).

 Because the IntFileReader class no longer extends the CsvFileHandler
class, the IntFileReader class no longer inherits the close() method from
it. To allow users of the IntFileReader class to close the file, we manually add
a close() function to the class, which just calls the close() function on the
instance of FileValueReader. This is called forwarding because the Int-
FileReader.close() function is forwarding the instruction to close the file
to the FileValueReader.close() function.

/**
 * Utility for reading integers from a file one-by-one.
 */
class IntFileReader {
 private final FileValueReader valueReader;

 IntFileReader(FileValueReader valueReader) {
 this.valueReader = valueReader;
 }

 Int? getNextInt() {
 String? nextValue = valueReader.getNextValue();
 if (nextValue == null) {
 return null;
 }
 return Int.parse(nextValue, Radix.BASE_10);
 }

 void close() {
 valueReader.close();
 }
}

Listing 8.15 A class that uses composition

IntFileReader holds an
instance of FileValueReader.

An instance of FileValueReader
is dependency injected.

The close() function forwards
to valueReader.close().

222 CHAPTER 8 Make code modular
The use of composition gives us the benefits of code reuse but avoids the problems with
inheritance that we saw earlier in this section. The following subsections explain why.

CLEANER LAYERS OF ABSTRACTION

When using inheritance, a subclass inherits and exposes any functionality from the
superclass. This meant that our IntFileReader class ended up exposing functions
from the CsvFileHandler class. This resulted in a very strange public API, which
allowed callers to read strings and even write values. If we use composition instead,
then none of the functionality of the CsvFileHandler class is exposed (unless the
IntFileReader class explicitly exposes it using forwarding or delegation).

 To demonstrate how much cleaner the layer of abstraction is, listing 8.16 shows
how the API of the IntFileReader class looks now that we’re using composition.
Only the getNextInt() and close() functions are exposed, and callers can no lon-
ger read strings or write values.

class IntFileReader {
 ...

 Int? getNextInt() { ... }
 void close() { ... }
}

MORE ADAPTABLE CODE

Let’s consider the requirement change we saw previously: we need to also support files
that use semicolon-separated values. Because the IntFileReader class now depends
on the FileValueReader interface, and because this is dependency injected, this
requirement is very easy to support. The IntFileReader class can be constructed

Delegation
Listing 8.15 demonstrates how the IntFileReader.close() function forwards to
the FileValueReader.close() function. When we only need to forward a single
function, this isn’t much of a bother. But there can be scenarios where it’s necessary
to forward many functions to a composing class, and it can become extremely
tedious to manually write all of these.

This is a recognized problem, and as such some languages have either built-in or add-
on support for delegation, which can make this a lot easier. This generally makes it
possible for one class to expose some functions from a composing class in a con-
trolled way. A couple of language specific examples are as follows:

 Kotlin has built-in support for delegation: https://kotlinlang.org/docs/
reference/delegation.html

 In Java, Project Lombok provides an add-on Delegate annotation that can be
used to delegate methods to a composing class: https://projectlombok.org/
features/Delegate.html

Listing 8.16 The public API of IntFileReader

https://kotlinlang.org/docs/reference/delegation.html
https://kotlinlang.org/docs/reference/delegation.html
https://projectlombok.org/features/Delegate.html
https://projectlombok.org/features/Delegate.html

223Beware of class inheritance
with any implementation of FileValueReader, so it’s trivially easy to configure it
with either a CsvFileHandler or a SemicolonFileHandler without duplicating
any code. We could make this especially easy by providing two factory functions to cre-
ate suitably configured instances of the IntFileReader class. The following listing
shows what these might look like.

class IntFileReaderFactory {

 IntFileReader createCsvIntReader(File file) {
 return new IntFileReader(new CsvFileHandler(file));
 }

 IntFileReader createSemicolonIntReader(File file) {
 return new IntFileReader(new SemicolonFileHandler(file));
 }
}

The IntFileReader class is relatively straightforward, so using composition may not
seem like a massive win in terms of making the code adaptable and avoiding duplica-
tion, but this is a deliberately simple example. In real life, classes can often contain
more code and functionality than this, so the costs of having code that can’t be
adapted to even small changes in requirements can become quite high.

8.3.3 What about genuine is-a relationships?

The start of this section mentioned that inheritance can make sense when two classes
have a genuine is-a relationship: a Ford Mustang is a car, so we might make a Ford-
Mustang class extend a Car class. The example of the IntFileReader and Csv-
FileHandler classes clearly doesn’t follow this relationship: an IntFileReader is
not intrinsically a CsvFileHandler, so this is quite a clear-cut scenario where compo-
sition is almost certainly better than inheritance. But when there is a genuine is-a rela-
tionship, it can be less clear-cut as to whether inheritance is a good approach.
Unfortunately, there is no one answer to this, and it will depend on the given scenario
and the code we’re working on. But it’s worth being aware that even when there is a
genuine is-a relationship, inheritance can still be problematic. Some things to watch
out for are as follows:

 The fragile base class problem—If a subclass inherits from a superclass (sometimes
called a base class), and that superclass is later modified, this can sometimes
break the subclass. This can make it very hard to reason about whether a certain
code change is safe.

 The diamond problem—Some languages support multiple inheritance (a class
extending more than one superclass). This can lead to issues if multiple super-
classes provide versions of the same function, because it can be ambiguous as to
which superclass the function should be inherited from.

Listing 8.17 Factory functions

224 CHAPTER 8 Make code modular
 Problematic hierarchies—Many languages do not support multiple inheritance,
meaning a class can only directly extend a maximum of one other class. This is
called single inheritance and can cause another type of problem. Imagine we have
a class called Car, which all classes representing a type of car should extend. In
addition to this, imagine we also have a class called Aircraft, which all classes
representing a type of aircraft should extend. Figure 8.2 shows what our class
hierarchy looks like. Now imagine someone invents a flying car; what do we do?
There’s no sensible way to fit this into our class hierarchy because the Flying-
Car class can either extend the Car class or the Aircraft class, but not both.

Figure 8.2 Many languages support only single inheritance. This can lead to problems when a
class logically belongs in more than one hierarchy.

Sometimes there is an inescapable need for a hierarchy of objects. To achieve this, while
avoiding many of the pitfalls of class inheritance, engineers often do the following:

 Use interfaces to define a hierarchy of objects.
 Use composition to achieve reuse of code.

Figure 8.3 shows how the car and aircraft hierarchies look if Car and Aircraft are
interfaces. To achieve reuse of the code that is common between all cars, each car
class is composed of an instance of DrivingAction. Similarly, classes for aircraft are
composed of an instance of FlyingAction.

 There are enough pitfalls with class inheritance that it’s good to be wary of it.
Many engineers go as far as to make a point of avoiding it whenever they can. Luckily,
the use of composition and interfaces can often achieve many of the benefits of inher-
itance without suffering the drawbacks.

class Car {
 ...
 void drive() { ... }
}

Car

class Aircraft {
 ...
 void fly() { ... }
}

Aircraft

GuimbalCabriG2 Cessna172FordMustang Volvo240

Extends Extends Extends Extends

FlyingCar

Should the FlyingCar class extend Car or Aircraft?

225Beware of class inheritance
Figure 8.3 Hierarchies can be defined using interfaces, while code reuse can be achieved using
composition.

Mixins and traits
Mixins and traits are features supported in some languages. They allow pieces of
functionality to be added to (and shared between) classes without having to use tra-
ditional class inheritance. The exact definitions of mixin and trait and the distinction
between them varies from language to language. How to implement them can also
vary a lot between different languages.

Mixins and traits help overcome some of the issues with multiple inheritance and
problematic class hierarchies. But, similar to class inheritance, they can still lead to
code that doesn’t have clean layers of abstraction and that isn’t very adaptable, so
it’s usually still a good idea to apply care and consideration when thinking about
using mixins and traits. Some language-specific examples of mixins and traits are as
follows:

 Mixins—The Dart programming language supports mixins and provides a prac-
tical example of how they can be used: http://mng.bz/9NPq. The use of mixins
is also relatively common in TypeScript: http://mng.bz/jBl8.

 Traits—The Rust programming language supports traits: http://mng.bz/Wryl.
And the inclusion of default interface methods in more recent versions of Java
and C# provide a way of implementing traits in those languages.

interface Car {
 void drive();
}

Car

interface Aircraft {
 void fly();
}

Aircraft

GuimbalCabriG2 Cessna172FordMustang Volvo240

Implements

DrivingAction

Implements Implements Implements

Implements

FlyingAction

Hierarchies defined using interfaces

Reuse of implementations achieved using composition

Composed ofComposed of

Composed

of

FlyingCar

Composed of

Composed of

http://mng.bz/Wryl
http://mng.bz/9NPq
http://mng.bz/jBl8

226 CHAPTER 8 Make code modular
8.4 Classes should care about themselves
As was stated at the start of this chapter, one of the key aims of modularity is that a
change in requirements should require changes only in the code directly related to
that requirement. If a single concept is completely contained within a single class,
then this aim is often achieved. Any change in requirements related to that concept
will require modifying only that single class.

 The opposite of this is when a single concept gets spread across multiple classes.
Any change in requirements related to that concept will require modifying multiple
classes. And if an engineer forgets to modify one of these classes, then this might
result in a bug. A common way this can happen is when a class cares too much about
the details of another class.

8.4.1 Caring too much about other classes can be problematic

Listing 8.18 contains part of the code for two separate classes. The first class rep-
resents a book and the second represents a chapter within a book. The Book class pro-
vides a wordCount() function for counting how many words are within the book.
This involves counting the words in each chapter and then taking the sum of these.
The Book class contains the function getChapterWordCount(), which counts the
number of words in a chapter. Despite being within the Book class, this function cares
about things to do with only the Chapter class. This means that a lot of details about
the Chapter class are now hard coded into the Book class. For example, the Book
class assumes that a chapter will contain only a prelude and a list of sections.

class Book {
 private final List<Chapter> chapters;
 ...

 Int wordCount() {
 return chapters
 .map(getChapterWordCount)
 .sum();
 }

 private static Int getChapterWordCount(Chapter chapter) {
 return chapter.getPrelude().wordCount() +
 chapter.getSections()
 .map(section -> section.wordCount())
 .sum();

 }
}

class Chapter {
 ...

 TextBlock getPrelude() { ... }

 List<TextBlock> getSections() { ... }
}

Listing 8.18 Book and chapter classes

This function cares
only about the
Chapter class.

227Classes should care about themselves
Placing the getChapterWordCount() function within the Book class makes the
code less modular. If a requirement changes and a chapter is now meant to have a
summary at the end, then the getChapterWordCount() function would need to be
updated to also count the words in the summary. This means that changes in require-
ments that relate only to chapters will affect more than just the Chapter class. And if
an engineer adds support for a summary to the Chapter class, but then forgets to
update the Book.getChapterWordCount() function, the logic for counting the
words in the book would be broken.

8.4.2 Solution: Make classes care about themselves

To keep code modular and to ensure that changes to one thing affect only one part of
the code, we should ensure that the Book and Chapter classes care only about them-
selves as much as possible. The Book class obviously needs some knowledge of the
Chapter class (because a book contains chapters). But we can minimize the amount
these classes care about each other’s details by moving the logic within the get-
ChapterWordCount() function to the Chapter class.

 Listing 8.19 shows what the code now looks like. The Chapter class now has a
member function named wordCount(), and the Book class makes use of this func-
tion. The Book class now only cares about itself rather than also caring about details
of the Chapter class. If a requirement changed and chapters were meant to have a
summary at the end, then only the Chapter class would need to be modified.

class Book {
 private final List<Chapter> chapters;
 ...

 Int wordCount() {
 return chapters
 .map(chapter -> chapter.wordCount())
 .sum();
 }
}

class Chapter {
 ...

 TextBlock getPrelude() { ... }

 List<TextBlock> getSections() { ... }

 Int wordCount() {
 return getPrelude().wordCount() +
 getSections()
 .map(section -> section.wordCount())
 .sum();
 }
}

Listing 8.19 Improved book and chapter classes

Logic to count words
within a chapter is fully
contained within the
Chapter class

228 CHAPTER 8 Make code modular
One of the key aims of making code modular is that a change in requirements should
result in changes only to those parts of the code that directly relate to that require-
ment. Classes often need some amount of knowledge of one another, but it’s often
worth minimizing this as much as possible. This can help keep code modular and can
greatly improve adaptability and maintainability.

8.5 Encapsulate related data together
Classes allow us to group things together. Chapter 2 cautioned about the problems
that can be caused when we try to group too many things together into one class. We
should be cautious of this, but in doing so we shouldn’t lose sight of the benefits of
grouping things together when it makes sense.

 Sometimes different pieces of data are inescapably related to one another and a
piece of code needs to pass them around together. In this scenario it often makes
sense to group them together into a class (or similar structure). Doing this allows code
to deal with the higher level concept that the group of items represent rather than
always having to deal with the nuts-and-bolts details. This can make code more modu-
lar and keep changes in requirements more isolated.

8.5.1 Unencapsulated data can be difficult to handle

Consider the code in listing 8.20. The TextBox class represents an element within a
user interface and the renderText() function displays some text within this

The Law of Demeter
The Law of Demetera (sometimes abbreviated LoD) is a software engineering princi-
ple that states that one object should make as few assumptions as possible about
the content or structure of other objects. In particular, the principle advocates that
an object should interact only with other objects that it’s immediately related to.

In the context of the example in this section, the Law of Demeter would advocate that
the Book class should interact only with instances of the Chapter class and not
with any objects within the Chapter class (such as the TextBlocks that represent
the prelude and sections). The original code in listing 8.18 clearly breaks this with a
line like chapter.getPrelude().wordCount(), so the Law of Demeter could
have been used to spot the problem with the original code in this scenario.

With any software engineering principle, it’s important to consider the reasoning
behind it and the advantages as well as disadvantages that it might provide in differ-
ent scenarios. The Law of Demeter is no different, so if you want to find out more
about it, I’d encourage you to read the differing arguments around it and form a well-
grounded opinion. To this end, the following articles may be useful:

 An article that explains the principle in more detail and presents some of the
advantages: http://mng.bz/8WP5

 An article that presents some of the disadvantages: http://mng.bz/EVPX

a The Law of Demeter was proposed by Ian Holland in the 1980s.

http://mng.bz/EVPX
http://mng.bz/8WP5

229Encapsulate related data together
element. The renderText() function has four parameters that are related to what
styling the text should have.

class TextBox {
 ...

 void renderText(
 String text,
 Font font,
 Double fontSize,
 Double lineHeight,
 Color textColor) {
 ...
 }
}

The TextBox class is likely a relatively low-level piece of code, so the renderText()
function is probably called by a function, which is in turn called by another function,
and so on. This means that the values related to styling the text potentially have to be
passed from one function to the next several times. Listing 8.21 shows a simplified ver-
sion of this. In this scenario the UiSettings class is the source of the text styling val-
ues. The UserInterface.displayMessage() function reads these values from
uiSettings and passes them along to the renderText() function.

 The displayMessage() function doesn’t actually care about any of the specifics
of text styling. All it cares about is the fact that UiSettings provides some styling and
renderText() needs these. But because the text styling options are not encapsulated
together, the displayMessage() function is forced to have detailed knowledge of
the nuts-and-bolts details of text styling.

class UiSettings {
 ...

 Font getFont() { ... }
 Double getFontSize() { ... }
 Double getLineHeight() { ... }
 Color getTextColor() { ... }
}

class UserInterface {
 private final TextBox messageBox;
 private final UiSettings uiSettings;

 void displayMessage(String message) {

Listing 8.20 Class and function to render text

Listing 8.21 UiSettings and UserInterface classes

230 CHAPTER 8 Make code modular
 messageBox.renderText(
 message,
 uiSettings.getFont(),
 uiSettings.getFontSize(),
 uiSettings.getLineHeight(),
 uiSettings.getTextColor());
 }
}

In this scenario the displayMessage() function is a bit like a courier delivering
some information from the UiSettings class to the renderText() function. In real
life, a courier will often not care exactly what is inside a package. If you post a box of
chocolates to a friend, the courier doesn’t need to know whether you’re posting cara-
mel truffles or pralines. But in this scenario the displayMessage() class has to know
exactly what it is relaying.

 If a requirement changes and it’s now necessary to define a font style (e.g., italic)
for the renderText() function, we’ll have to modify the displayMessage() func-
tion to relay this new piece of information. As we saw earlier, one of the aims of modu-
larity is to ensure a change in a requirement only affects parts of the code directly
related to that requirement. In this case only the UiSettings and TextBox classes
actually deal with text styling, so it’s not ideal that the displayMessage() function
should also need to be modified.

8.5.2 Solution: Group related data into objects or classes

In this scenario the font, font size, line height, and text color are intrinsically linked to
one another: to know how to style some text, we need to know all of them. Given that
they are linked like this, it makes sense to encapsulate them together into a single
object that can then be passed around. The following listing shows a class called Text-
Options, which does exactly this.

class TextOptions {
 private final Font font;
 private final Double fontSize;
 private final Double lineHeight;
 private final Color textColor;

 TextOptions(Font font, Double fontSize,
 Double lineHeight, Color textColor) {
 this.font = font;
 this.fontSize = fontSize;
 this.lineHeight = lineHeight;
 this.textColor = textColor;
 }

 Font getFont() { return font; }
 Double getFontSize() { return fontSize; }
 Double getLineHeight() { return lineHeight; }
 Color getTextColor() { return textColor; }
}

Listing 8.22 TextOptions encapsulating class

The displayMessage() function
contains nuts-and-bolts
details of text styling.

231Encapsulate related data together
Using the TextOptions class, we can now encapsulate text styling information
together and just pass around an instance of TextOptions instead. Listing 8.23 shows
what the code from the previous subsection now looks like. The displayMessage()
function now has no knowledge of the specifics of text styling. If we did need to add a
font style, then we wouldn’t need to make any changes to the displayMessage()
function. It’s become more like a good courier: it diligently delivers the package with-
out caring too much about what’s inside.

class UiSettings {
 ...

 TextOptions getTextStyle() { ... }
}

class UserInterface {
 private final TextBox messageBox;
 private final UiSettings uiSettings;

 void displayMessage(String message) {
 messageBox.renderText(
 message, uiSettings.getTextStyle());
 }
}

class TextBox {
 ...

 void renderText(String text, TextOptions textStyle) {
 ...
 }
}

Deciding when to encapsulate things together can require a bit of thought. Chapter 2
demonstrated how problems can occur when too many concepts are bundled
together into the same class, so it pays to be a bit cautious. But when different pieces

Alternative to data objects
Encapsulating data together (like the TextOptions class does) can be another use
case for data objects, which were discussed in the previous chapter in section 7.3.3.

As was said in the previous chapter, proponents of a more traditional take on object-
oriented programming sometimes consider data-only objects bad practice, so it’s
worth noting that another approach in this scenario might be to bundle the styling
information and the logic that implements text styling into the same class. If we did
this, then we’d likely end up with a TextStyler class that we pass around. The gen-
eral point about encapsulating related data together still applies though.

Listing 8.23 Passing encapsulating object around

The displayMessage()
function has no specific
knowledge of text styling.

232 CHAPTER 8 Make code modular
of data are inescapably related to one another, and there’s no practical scenario in
which someone would want some of the pieces of data without wanting all of them,
then it usually makes sense to encapsulate them together.

8.6 Beware of leaking implementation details in return types
Chapter 2 established the importance of creating clean layers of abstraction. In order
to have clean layers of abstraction, it’s necessary to ensure that layers don’t leak imple-
mentation details. If implementation details are leaked, this can reveal things about
lower layers in the code and can make it very hard to modify or reconfigure things in
the future. One of the most common ways code can leak an implementation detail is
by returning a type that is tightly coupled to that detail.

8.6.1 Leaking implementation details in a return type can be problematic

 Listing 8.24 shows some code that can be used to look up the profile picture for a
given user. The ProfilePictureService is implemented using an HttpFetcher
to fetch the profile picture data from a server. The fact that HttpFetcher is used is
an implementation detail, and as such, any engineer using the ProfilePicture-
Service class should ideally not have to concern themselves with this piece of
information.

 Even though the ProfilePictureService class does not directly leak the fact
that HttpFetcher is used, it unfortunately leaks it indirectly via a return type. The
getProfilePicture() function returns an instance of ProfilePictureResult. If
we look inside the ProfilePictureResult class we see that it uses HttpResponse
.Status to indicate if the request was successful and HttpResponse.Payload to
hold the image data for the profile picture. These both leak the fact that the
ProfilePictureService uses an HTTP connection to fetch the profile picture.

class ProfilePictureService {
 private final HttpFetcher httpFetcher;
 ...

 ProfilePictureResult getProfilePicture(Int64 userId) { ... }
}

class ProfilePictureResult {
 ...

 /**
 * Indicates if the request for the profile picture was
 * successful or not.
 */
 HttpResponse.Status getStatus() { ... }

 /**
 * The image data for the profile picture if it was successfully
 * found.
 */
 HttpResponse.Payload? getImageData() { ... }
}

Listing 8.24 Implementation details in a return type

ProfilePictureService is implemented
using an HttpFetcher.

Returns an instance of
ProfilePictureResult

Data types
specific to
an HTTP
response

233Beware of leaking implementation details in return types
Chapter 2 emphasized the importance of not leaking implementation details, so from
that point of view we can probably immediately see that this code is less than ideal. But
to really see how harmful this code could be, let’s drill into some of the consequences,
such as the following:

 Any engineer using the ProfilePictureService class has to deal with a num-
ber of concepts specific to an HttpResponse. To understand if a profile picture
request was successful and why it may have failed, an engineer has to interpret
an HttpResponse.Status enum value. This requires knowing about HTTP
status codes and which specific HTTP status codes the server might actually be
utilizing. An engineer might guess that they need to check for STATUS_200
(which indicates success) and STATUS_404 (which indicates that the resource
could not be found). But what about the other 50-plus HTTP status codes that
sometimes get used?

 It’s very hard to ever change the implementation of ProfilePictureService.
Any code that calls ProfilePictureService.getProfilePicture() has to
deal with the HttpResponse.Status and HttpResponse.Payload types to
make sense of the response, so layers of code built on top of ProfilePicture-
Service are relying on the fact that it returns types specific to an Http-
Response. Imagine there is a change in requirements meaning that our
application should be able to fetch profile pictures using a WebSocket connec-
tion (for example). Because so much code relies on the usage of types specific to
an HttpResponse, it will require a lot of code changes in a lot of places to sup-
port any change in requirements like this.

It would be better if the ProfilePictureService didn’t leak implementation
details like this. A better approach would be if it returned a type that was appropriate
to the layer of abstraction it aims to provide.

8.6.2 Solution: Return a type appropriate to the layer of abstraction

The problem that the ProfilePictureService class solves is that of fetching a pro-
file picture for a user. This dictates the layer of abstraction that this class should ideally
be providing, and any return types should reflect this. We should try to keep the num-
ber of concepts that we expose to engineers using the class to a minimum. In this sce-
nario the minimal set of concepts that we need to expose are the following:

 A request may succeed, or it may fail for one of the following reasons:
– The user does not exist.
– Some kind of transient error occurred (like the server being unreachable).

 The bytes of data that represent the profile picture.

Listing 8.25 shows how we might implement the ProfilePictureService and
ProfilePictureResult classes if we try to keep the number of concepts we expose
to this minimal set. The important changes we’ve made are as follows:

 Instead of using the HttpResponse.Status enum, we have defined a custom
enum that contains only the set of statuses that an engineer using this class actu-
ally needs to care about.

234 CHAPTER 8 Make code modular
 Instead of returning HttpResponse.Payload, we return a list of bytes.

class ProfilePictureService {
 private final HttpFetcher httpFetcher;
 ...

 ProfilePictureResult getProfilePicture(Int64 userId) { ... }
}

class ProfilePictureResult {
 ...

 enum Status {
 SUCCESS,
 USER_DOES_NOT_EXIST,
 OTHER_ERROR,
 }

 /**
 * Indicates if the request for the profile picture was
 * successful or not.
 */
 Status getStatus() { ... }

 /**
 * The image data for the profile picture if it was successfully
 * found.
 */
 List<Byte>? getImageData() { ... }
}

In general, reusing code is good, so at a first glance it might have seemed like a good
idea to reuse the HttpResponse.Status and HttpResponse.Payload types in the
ProfilePictureResult class. But when we think about it more, we realize that
these types are not appropriate to the layer of abstraction we’re providing, so defining
our own types that capture the minimal set of concepts and using these instead results
in cleaner layers of abstraction and more modular code.

8.7 Beware of leaking implementation details in exceptions
The previous section showed how leaking implementation details in return types can
cause problems. A return type is in the unmistakably obvious part of the code

Listing 8.25 Return type matches layer of abstraction

Enums
As was mentioned in chapter 6, enums cause some amount of disagreement among
engineers. Some like using them, and others consider polymorphism a better
approach (creating different classes that implement a common interface).

Whether you like enums or not, the key take-away here is to use a type that is appro-
priate to the layer of abstraction (be that an enum or class).

A custom enum to
define just the
statuses we require

Returns
custom enum

Returns a
list of bytes

235Beware of leaking implementation details in exceptions

contract, so (while being problematic) it’s usually quite easy to spot when we might be
doing this, which can make it easier to avoid. Another common way in which imple-
mentation details can be leaked is via the types of exceptions that we throw. In partic-
ular, chapter 4 discussed how unchecked exceptions are in the small print of the code
contract, and sometimes not even in the written contract at all, so if we’re using
unchecked exceptions for errors that callers might want to recover from, then leaking
implementation details in them can be particularly problematic.

8.7.1 Leaking implementation details in exceptions can be problematic

One of the defining features of unchecked exceptions is that the compiler does not
enforce anything about where and when they may be thrown, or about where (or if)
code catches them. Knowledge about unchecked exceptions is either conveyed in the
small print of the code contract or else not conveyed in the written contract at all if
engineers forget to document them.

 Listing 8.26 contains the code for two adjacent layers of abstraction. The lower
layer is the TextImportanceScorer interface, and the upper layer is the Text-
Summarizer class. In this scenario, ModelBasedScorer is a concrete implementa-
tion that implements the TextImportanceScorer interface, but ModelBased-
Scorer.isImportant() can throw the unchecked exception PredictionModel-
Exception.

class TextSummarizer {
 private final TextImportanceScorer importanceScorer;
 ...

 String summarizeText(String text) {
 return paragraphFinder.find(text)
 .filter(paragraph =>
 importanceScorer.isImportant(paragraph))
 .join("\n\n");
 }
}

interface TextImportanceScorer {
 Boolean isImportant(String text);
}

class ModelBasedScorer implements TextImportanceScorer {
 ...
 /**
 * @throws PredictionModelException if there is an error
 * running the prediction model.
 */
 override Boolean isImportant(String text) {
 return model.predict(text) >= MODEL_THRESHOLD;
 }
}

Listing 8.26 Exception leaking implementation detail

Depends on the
TextImportanceScorer
interface

An implementation
of the TextImportance-
Scorer interface

An unchecked exception
that can be thrown

236 CHAPTER 8 Make code modular
An engineer using the TextSummarizer class will likely notice sooner or later that
their code sometimes crashes due to a PredictionModelException, and they may
well want to handle this error scenario gracefully and recover from it. To do so, they
would have to write something like the code in listing 8.27. The code catches a
PredictionModelException and displays an error message to the user. In order to
make the code work, the engineer has had to become aware of the fact that the Text-
Summarizer class can use model-based predictions (an implementation detail).

 Not only does this break the concept of layers of abstraction, but it can also be
unreliable and error prone. The TextSummarizer class depends on the Text-
ImportanceScorer interface, and as such can be configured with any implementa-
tion of this interface. ModelBasedScorer is just one such implementation, but it’s
likely not the only one. TextSummarizer might be configured with a different imple-
mentation of TextImportanceScorer that throws a completely different type of
exception. If this happens then the catch statement won’t catch the exception, and
the program would either crash or the user would see a potentially less helpful error
message from a higher level in the code.

void updateTextSummary(UserInterface ui) {
 String userText = ui.getUserText();
 try {
 String summary = textSummarizer.summarizeText(userText);
 ui.getSummaryField().setValue(summary);
 } catch (PredictionModelException e) {
 ui.getSummaryField().setError("Unable to summarize text");
 }
}

The risk of leaking implementation details is not unique to unchecked exceptions,
but in this instance their use exacerbates the problem. It’s too easy for engineers to
not document what unchecked exceptions might be thrown, and classes that imple-
ment an interface are not forced to only throw errors that the interface dictates.

8.7.2 Solution: Make exceptions appropriate to the layer of abstraction

In order to prevent implementation details being leaked, each layer in the code
should ideally reveal only error types that reflect the given layer of abstraction. We can
achieve this by wrapping any errors from lower layers into error types appropriate to
the current layer. This means that callers are presented with an appropriate layer of
abstraction while also ensuring that the original error information is not lost (because
it’s still present within the wrapped error).

 Listing 8.28 demonstrates this. A new exception type called TextSummarizer-
Exception has been defined to signal any errors to do with summarizing text. Simi-
larly, a TextImportanceScorerException has been defined to signal any errors to
do with scoring text (regardless of which implementation of the interface is being

Listing 8.27 Catching implementation-specific exception

PredictionModel-
Exception caught
and handled

237Beware of leaking implementation details in exceptions
used). Finally, the code has been modified to use an explicit error-signaling tech-
nique. In this example, this is achieved with checked exceptions.

 An obvious downside is that there are now more lines of code, as we’ve had to
define some custom exception classes and catch, wrap, and rethrow various excep-
tions. On a first glance at the code it may seem “more complex,” but this is not really
true if we consider the software as a whole. An engineer using the TextSummarizer
class now has only one type of error they will ever have to deal with, and they know for
sure which type this is. The downsides of the extra error handling boilerplate within
the code are likely outweighed by the benefits of improved modularity and the more
predictable behavior of the TextSummarizer class.

class TextSummarizerException extends Exception {
 ...
 TextSummarizerException(Throwable cause) { ... }
 ...
}

class TextSummarizer {
 private final TextImportanceScorer importanceScorer;
 ...

 String summarizeText(String text)
 throws TextSummarizerException {

Recap: Alternatives to checked exceptions
Checked exceptions are just one type of explicit error-signaling technique and (among
mainstream programming languages) are more or less unique to Java. Chapter 4 cov-
ered this in detail and demonstrated some alternative explicit techniques that can be
used in any language (such as result types and outcomes). Checked exceptions are
used in listing 8.28 to keep the code more easily comparable to the code in listing
8.26.

Another thing that chapter 4 discussed is how error signaling and handling is a divi-
sive topic, and in particular how engineers disagree about the usage of unchecked
exceptions versus more explicit error-signaling techniques for errors that a caller
might want to recover from. But even if we work on a codebase where the use of
unchecked exceptions is encouraged for this, it’s still often important to ensure that
they don’t leak implementation details (as the previous subsection showed).

An approach sometimes favored by engineers using unchecked exceptions is to pre-
fer standard exception types (like ArgumentException or StateException),
because it’s more likely that other engineers will predict that these might be thrown,
and handle them appropriately. A downside of this is that it can limit the ability to
distinguish between different error scenarios (this was also discussed in chapter 4,
section 4.5.2).

Listing 8.28 Exceptions appropriate to layers

Exception for signaling
an error to do with
summarizing text

Constructor accepts another
exception to wrap (Throwable
is a superclass of Exception)

238 CHAPTER 8 Make code modular
 try {
 return paragraphFinder.find(text)
 .filter(paragraph =>
 importanceScorer.isImportant(paragraph))
 .join("\n\n");
 } catch (TextImportanceScorerException e) {
 throw new TextSummarizerException(e);
 }
 }
}

class TextImportanceScorerException extends Exception {
 ...
 TextImportanceScorerException(Throwable cause) { ... }
 ...
}

interface TextImportanceScorer {
 Boolean isImportant(String text)
 throws TextImportanceScorerException;
}

class ModelBasedScorer implements TextImportanceScorer {
 ...
 Boolean isImportant(String text)
 throws TextImportanceScorerException {
 try {
 return model.predict(text) >= MODEL_THRESHOLD;
 } catch (PredictionModelException e) {
 throw new TextImportanceScorerException(e);
 }
 }
}

An engineer using the TextSummarizer class would now need to handle only the
TextSummarizerException. This means that they don’t have to be aware of any
implementation details, and it also means that their error handling will keep working
regardless of how the TextSummarizer class has been configured or is changed in
the future. This is shown in the following listing.

void updateTextSummary(UserInterface ui) {
 String userText = ui.getUserText();
 try {
 String summary = textSummarizer.summarizeText(userText);
 ui.getSummaryField().setValue(summary);
 } catch (TextSummarizerException e) {
 ui.getSummaryField().setError("Unable to summarize text");
 }
}

If we know for sure that an error is not one any caller would ever want to recover from,
then leaking implementation details is not a massive issue, as higher layers probably

Listing 8.29 Catching layer-appropriate exception

TextImportanceScorerException
is wrapped in a TextSummarizer-
Exception and rethrown.

Exception for
signaling an error to
do with scoring text

The interface defines the
error types exposed by
the layer of abstraction.

PredictionModelException is
wrapped in a TextImportance-
ScorerException and rethrown.

239Summary
won’t try to handle that specific error anyway. But whenever we have an error that a
caller might want to recover from, it’s often important to ensure that the type of the
error is appropriate to the layer of abstraction. Explicit error-signaling techniques (like
checked exceptions, results, and outcomes) can make it easier to enforce this.

Summary
 Modular code is often easier to adapt to changing requirements.
 One of the key aims of modularity is that a change in a requirement should

only affect parts of the code directly related to that requirement.
 Making code modular is highly related to creating clean layers of abstraction.
 The following techniques can be used to make code modular:

– Using dependency injection
– Depending on interfaces instead of concrete classes
– Using interfaces and composition instead of class inheritance
– Making classes care about themselves
– Encapsulating related data together
– Ensuring that return types and exceptions don’t leak implementation details

Make code reusable
and generalizable
Chapter 2 discussed how, as engineers, we often solve a high-level problem by
breaking it down into a series of subproblems. As we do this on one project after
another, we often find that the same subproblems come up again and again. If we
or other engineers have already solved a given subproblem, then it makes sense to
reuse that solution. It saves us time and reduces the chance of bugs (because the
code is already tried and tested).

 Unfortunately, just because a solution to a subproblem already exists, it doesn’t
always mean that we can reuse it. This can happen if the solution makes assump-
tions that don’t fit our use case, or if it’s bundled together with some other logic
that we don’t need. It’s therefore worth actively considering this and deliberately
writing and structuring code in a way that will allow it to be reused in the future.

This chapter covers
 How to write code that can be safely reused

 How to write code that can generalize to solve
different problems
240

241Beware of assumptions
This can require a bit more upfront effort (although often not much more) but will
usually save us and our teammates time and effort in the long run.

 This chapter is highly related to creating clean layers of abstraction (chapter 2)
and making code modular (chapter 8). Creating clean layers of abstraction and mak-
ing code modular tend to result in the solutions to subproblems being broken up into
distinct pieces of code that are only loosely coupled. This usually makes code much
easier and safer to reuse and generalize. But the things we discussed in chapters 2 and
8 aren’t the only considerations that go into making code reusable and generalizable.
This chapter covers some additional things to think about.

9.1 Beware of assumptions
Making assumptions can sometimes result in code that is simpler, more efficient, or
both. But assumptions also tend to result in code that is more fragile and less versatile,
which can make it less safe to reuse. It’s incredibly hard to keep track of exactly which
assumptions have been made in which parts of the code, so they can easily turn into
nasty traps that other engineers will inadvertently fall into. What might have initially
seemed like an easy way to improve the code might actually have the opposite effect
when bugs and weird behavior manifest as soon as the code is reused.

 Given this, it’s worth thinking through the costs and benefits before baking an
assumption into the code. If the apparent gains in code simplification or efficiency
are marginal, then it might be best to avoid making the assumption, because the costs
from increased fragility might outweigh these. The following subsections explore this.

9.1.1 Assumptions can lead to bugs when code is reused

Consider the code in listing 9.1. The Article class represents an article on a news
website that users can read. The getAllImages() function returns all the images
contained within the article. To do this, it iterates through the sections within the arti-
cle until it finds one that contains images and then returns the images from that sec-
tion. The code makes the assumption that there will be only one section that contains
images. This assumption is commented within the code, but this is unlikely to be
something that any caller of the code notices.

 By making this assumption, the code is very marginally more performant because
it can exit the for-loop as soon as the image-containing section is found, but this gain
is probably so small that it’s of no real consequence. What might well be of conse-
quence, however, is the fact that the getAllImages() function won’t return all the
images if it’s ever used with an article that contains images in more than one section.
This could well be an accident waiting to happen, and when it does happen it will
likely cause a bug.

242 CHAPTER 9 Make code reusable and generalizable

class Article {
 private List<Section> sections;
 ...

 List<Image> getAllImages() {
 for (Section section in sections) {
 if (section.containsImages()) {
 // There should only ever be a maximum of one
 // section within an article that contains images.
 return section.getImages();
 }
 }
 return [];
 }
}

The assumption that there will be only one image section was no doubt correct for the
original use case that the author had in mind. But it could quite easily become incor-
rect if the Article class is ever reused for something else (or if the placement of
images within articles ever changes). And because this assumption is buried deep
within the code, it’s very unlikely that callers will be aware of it. They’ll see a function
called getAllImages() and assume that it returns “all” the images. Unfortunately
this is true only if the hidden assumption is true.

9.1.2 Solution: Avoid unnecessary assumptions

The cost–benefit trade-off of assuming that there is only one image section suggests
that it’s probably not a worthwhile assumption to make. On the one hand, there is a
marginal performance gain (which will likely not be noticeable), but on the other
hand there is a real likelihood of bugs being introduced if anyone reuses the code or
if a requirement changes. Given this, it’s probably better to just get rid of this assump-
tion: its presence introduces risk with no appreciable reward.

Listing 9.1 Code containing an assumption

Premature optimization
The desire to avoid premature optimizations is a well-established concept within soft-
ware engineering and computer science. Optimizing code generally has a cost asso-
ciated with it: it often takes more time and effort to implement an optimized solution,
and the resulting code is often less readable, harder to maintain, and potentially less
robust (if assumptions are introduced). In addition to this, optimizations usually only
have an appreciable benefit when made in pieces of code that run many thousands
or millions of times within a program.

Therefore, in most scenarios, it’s better to concentrate on making code readable,
maintainable, and robust rather than chasing marginal gains in performance. If a
piece of code ends up being run many times and it would be beneficial to optimize it,
this can be done later at the point this becomes apparent.

Assumption commented
within the code

Returns images only
from the first image-
containing section

243Beware of assumptions
Listing 9.2 shows what the code looks like if we remove the assumption by modifying
the getAllImages() function to return images from all sections (instead of just the
first one that contains images). This makes the function a lot more versatile and
robust to different use cases. The downside is that it results in the for-loop potentially
running for a few more iterations, but, as was just noted, it’s unlikely that this would
have a noticeable effect on performance.

class Article {
 private List<Section> sections;
 ...

 List<Image> getAllImages() {
 List<Image> images = [];
 for (Section section in sections) {
 images.addAll(section.getImages());
 }
 return images;
 }
}

When writing code, we’re often very alert to things like the performance costs of run-
ning a line of code more times than necessary. But it’s important to remember that
assumptions also carry an associated cost in terms of fragility. If making a particular
assumption results in a big performance gain or enormously simplified code, then it
might well be a worthwhile one to make. But if the gains are marginal, then the costs
associated with baking an assumption into the code might well outweigh the benefits.

9.1.3 Solution: If an assumption is necessary, enforce it

Sometimes making an assumption is necessary, or simplifies the code to such an extent
that the benefits outweigh the costs. When we do decide to make an assumption in the
code, we should still be mindful of the fact that other engineers might not be aware of
it, so to ensure that they don’t inadvertently get caught out by our assumption, we
should enforce it. There are generally two approaches we can take to achieve this:

1 Make the assumption “impossible to break”—If we can write the code in such a way
that it won’t compile if an assumption is broken, then this will ensure that the
assumption always holds. This was covered in chapters 3 and 7.

2 Use an error-signaling technique—If it’s not feasible to make the assumption
impossible to break, then we can write code to detect it being broken and use
an error-signaling technique to fail fast. This was covered in chapter 4 (and the
end of chapter 3).

A POTENTIALLY PROBLEMATIC, UNENFORCED ASSUMPTION

To demonstrate how an unenforced assumption can be problematic, let’s consider
another function that the Article class might contain, one that returns the image

Listing 9.2 Code with assumption removed

Collects and
returns images
from all sections

244 CHAPTER 9 Make code reusable and generalizable

section. Listing 9.3 shows what this function might look like if it doesn’t enforce an
assumption. It finds the sections that contain images and then returns the first one or
null if no section contains images. This code again makes the assumption that an arti-
cle will only ever contain a maximum of one image section. If this assumption is bro-
ken and the article contains multiple image sections, then the code won’t fail or
produce any kind of warning. Instead, it will just return the first such section and carry
on as though everything is fine (the opposite of failing fast).

class Article {
 private List<Section> sections;
 ...

 Section? getImageSection() {
 // There should only ever be a maximum of one
 // section within an article that contains images.
 return sections
 .filter(section -> section.containsImages())
 .first();
 }
}

The getImageSection() function is called by one of the pieces of code that renders
articles to display them to users. This is shown in listing 9.4. The template that this
code renders articles within has space for only a single image section. The assumption
that an article has a maximum of only one image section is therefore necessary for this
particular use case.

class ArticleRenderer {
 ...

 void render(Article article) {
 ...
 Section? imageSection = article.getImageSection();
 if (imageSection != null) {
 templateData.setImageSection(imageSection);
 }
 ...
 }
}

If anyone creates an article with multiple image sections and then tries to render it
using this code, things will behave in a weird and unexpected way. Everything will
seem to work (in that no errors or warnings occur), but in reality a load of the images
will be missing from the article. Depending on the nature of the article, this might
result in it being misleading or completely nonsensical.

Listing 9.3 Code containing an assumption

Listing 9.4 A caller that relies on the assumption

Returns the first image-
containing section or
null if there are none

The article template can only
handle a maximum of one
image-containing section.

245Beware of assumptions
ENFORCING THE ASSUMPTION

As noted in chapter 4, it’s usually best to ensure that failures and errors don’t go
unnoticed. In this scenario, trying to render an article with multiple image sections is
not supported and is therefore an error scenario. It would probably be better if the
code failed fast in this scenario rather than trying to limp on. We can modify the code
to do this by enforcing the assumption using an error-signaling technique.

 Listing 9.5 shows what the Article.getImageSection() function might look
like if it uses an assertion to enforce the assumption that there is a maximum of one
image section. The function has also been renamed to getOnlyImageSection() to
better convey to any callers of this function that they are making the assumption there
is only one image section. This makes it unlikely that any callers who do not wish to
make this assumption will call it.

class Article {
 private List<Section> sections;
 ...

 Section? getOnlyImageSection() {
 List<Section> imageSections = sections
 .filter(section -> section.containsImages());

 assert(imageSections.size() <= 1,
 "Article contains multiple image sections");

 return imageSections.first();
 }
}

As we’ve seen, assumptions tend to have an associated cost in terms of increased fragil-
ity. When the costs of a given assumption outweigh the benefits, it’s probably best to
avoid making it. If an assumption is necessary, then we should do our best to ensure that
other engineers don’t get caught by it; we can achieve this by enforcing the assumption.

Listing 9.5 Enforcing the assumption

Error-signaling techniques
Chapter 4 discussed different error-signaling techniques in detail, in particular how
the choice of technique often depends on whether a caller might want to recover from
the error.

Listing 9.5 uses an assertion, which is appropriate if we’re sure that no caller would
want to recover from the error. If the article is generated internally within our program,
then breaking the assumption implies a programming error, meaning an assertion is
probably appropriate. But if the article is supplied by an external system or a user,
then it’s likely that some callers will want to catch the error and handle it in a more
graceful way. In this scenario, an explicit error-signaling technique might be more
appropriate.

Function name conveys the
assumption that callers are making

Assertion enforces
the assumption

Returns the first item in the
imageSections list or null if it’s empty

246 CHAPTER 9 Make code reusable and generalizable
9.2 Beware of global state
A piece of global state (or a global variable) is one that is shared between all contexts
within a given instance of a program. Some common ways of defining a global variable
are as follows:

 Marking a variable as static in languages like Java or C# (this is the paradigm
used in the pseudocode in this book)

 Defining a file-level variable (outside of a class or function) in languages like C++
 Defining properties on the global window object in JavaScript-based languages

To demonstrate what is meant by a variable being global, consider the code in listing
9.6. Some things to notice about the code are as follows:

 a is an instance variable. Each instance of MyClass will have its own dedicated
a variable. One instance of the class modifying this variable will not affect any
other instance of the class.

 b is a static variable (meaning it’s a global variable). It’s therefore shared
between all instances of MyClass (and can even be accessed without having an
instance of MyClass; explained in the next bullet point).

 The getBStatically() function is marked static, meaning it can be called
without needing an instance of the class using a call like: MyClass.get-
BStatically(). A static function like this can access any static variables
defined in the class, but it can never access any instance variables.

class MyClass {
 private Int a = 3;
 private static Int b = 4;

 void setA(Int value) { a = value; }
 Int getA() { return a; }

 void setB(Int value) { b = value; }
 Int getB() { return b; }

 static Int getBStatically() { return b; }
}

The following snippet demonstrates how the instance variable a applies to individual
instances of the class, while the global variable b is shared between all instances of the
class (as well as static contexts):

MyClass instance1 = new MyClass();
MyClass instance2 = new MyClass();

instance1.setA(5);
instance2.setA(7);
print(instance1.getA()) // Output: 5
print(instance2.getA()) // Output: 7

Listing 9.6 A class with a global variable

An instance
variable

A global variable (because
it’s marked static)

A static
function

Each instance of MyClass has
its own separate “a” variable.

247Beware of global state
instance1.setB(6);
instance2.setB(8);
print(instance1.getB()) // Output: 8
print(instance2.getB()) // Output: 8
print(MyClass.getBStatically()) // Output: 8

NOTE: DON’T CONFUSE GLOBALNESS WITH VISIBILITY Whether or not a variable is
global shouldn’t be confused with the visibility of a variable. The visibility of a
variable refers to whether it is public or private, which dictates what other
parts of the code can see and access it. A variable can be public or private
regardless of whether it’s global. The point is that a global variable is shared
between all contexts in the program instead of each instance of a class or
function having its own version of it.

Because global variables affect every context within a program, using them often
makes the implicit assumption that no one would ever want to reuse the code for a
slightly different purpose. As we saw in the previous section, assumptions come with
an associated cost. Global state tends to make code extremely fragile and completely
unsafe to reuse, so the costs usually outweigh the benefits. The following subsections
explain why and provide an alternative.

9.2.1 Global state can make reuse unsafe

When there is some state that different parts of a program need to access, it can seem
tempting to put it into a global variable somewhere. This makes it very easy for any
piece of code to access the state. But, as was just mentioned, it also often has the effect
of making the code impossible to safely reuse. To demonstrate why, let’s imagine that
we’re building an online shopping application. In our application, users can browse
items, add them to their basket, and then check out at the end.

 In this scenario, the contents of the user’s shopping basket constitute state that
many different parts of the application all need to access, such as any code that adds
items to it, the screen where users review the contents of their basket, and the code that
handles the checkout. Because so many parts of the application need access to this
shared state, we might be tempted to store the contents of the user’s basket in a global
variable. Listing 9.7 shows what the code for the shopping basket might look like if we
use global state. Some things to notice about the code are as follows:

 The items variable is marked with the word static. This means that this vari-
able is not associated with a specific instance of the ShoppingBasket class,
making it a global variable.

 The functions addItem() and getItems() are also both marked static.
This means they can be called from anywhere in the code (without needing an
instance of ShoppingBasket) like so: ShoppingBasket.addItem(...) and
ShoppingBasket.getItems(). When called, they access the items global
variable.

The global “b” variable
is shared between all
instances of MyClass.

“b” can also be accessed
statically without needing
an instance of MyClass.

248 CHAPTER 9 Make code reusable and generalizable

class ShoppingBasket {
 private static List<Item> items = [];

 static void addItem(Item item) {
 items.add(item);
 }

 static void List<Item> getItems() {
 return List.copyOf(items);
 }
}

Anywhere in the code that needs to access the user’s shopping basket can easily do
this. Some examples are shown in listing 9.8. The ViewItemWidget allows users to
add the viewed item to their basket. This is achieved by calling ShoppingBasket
.addItem(). The ViewBasketWidget allows users to view the contents of their
basket. The contents of the basket are accessed by calling ShoppingBasket.get-
Items().

class ViewItemWidget {
 private final Item item;

 ViewItemWidget(Item item) {
 this.item = item;
 }
 ...

 void addItemToBasket() {
 ShoppingBasket.addItem(item);
 }
}

class ViewBasketWidget {
 ...
 void displayItems() {
 List<Item> items = ShoppingBasket.getItems();
 ...
 }
}

Modifying and reading the contents of the basket is trivially easy, and this is why it can
seem so tempting to use global state in this way. But in using global state like this, we
have created code that will break and do potentially weird things if anyone ever tries
to reuse it. The following subsection explains why.

WHAT HAPPENS WHEN SOMEONE TRIES TO REUSE THIS CODE?
Whether we realized it or not, our implicit assumption when writing this code was that
there would be only one basket needed per running instance of our piece of software.

Listing 9.7 ShoppingBasket class

Listing 9.8 Classes using ShoppingBasket

Marked static, making
it a global variable

Functions
marked static

Modifies the
global state

Reads the
global state

249Beware of global state
If our shopping application runs on only the user’s device, then for basic functionality
this assumption will hold and things will work correctly. But there are many reasons
this assumption might be broken, meaning it’s quite brittle. Some potential scenarios
that would result in this assumption being broken are as follows:

 We decide to back-up the contents of users’ baskets in our server, so we start using
the ShoppingBasket class in our server-side code. A single instance of our
server will handle many requests from many different users, so we now have many
baskets per running instance of our piece of software (the server in this case).

 We add a feature that allows a user to save the contents of their basket for later.
This means that the client-side application now has to handle several different
baskets: all of the saved-for-later ones in addition to the active one.

 We start selling fresh produce in addition to our normal stock. This uses a com-
pletely different set of suppliers and delivery mechanism so has to be handled
as a separate shopping basket.

We could probably sit here all day dreaming up different scenarios that break our
original assumption. Whether any of them will actually happen is anyone’s guess. But
the point is that there are enough plausible-sounding scenarios that break our origi-
nal assumption that we should probably realize that it’s brittle and quite likely to be
broken in one way or another at some point.

 When our original assumption gets broken, things will go wrong with the software.
If two different pieces of code are both using the ShoppingBasket class, they will
interfere with one another (figure 9.1). If one of them adds an item, this item will
then be in the basket for all other pieces of code using it. In any of the scenarios that
were just listed, this would probably result in buggy behavior, so the ShoppingBasket
class is basically impossible to reuse in a safe way.

Figure 9.1 Using global state can make code reuse unsafe.

static List<Item> items

Original code using

ShoppingBasket

New code also using

ShoppingBasket

ShoppingBasket

Global variable

Both pieces of code are modifying and reading
the same global state. This means they will have
unintended effects on each other.

250 CHAPTER 9 Make code reusable and generalizable
In the best-case scenario an engineer would realize that reusing the ShoppingBasket
class is unsafe and write new, completely separate code for their new use case. In the
worst-case scenario, they might not realize that reusing it is unsafe and the software will
end up containing bugs. These bugs could be quite catastrophic if customers end up
ordering items they don’t want, or if we breach their privacy by revealing the items in
their baskets to others. To summarize, in the best case, we end up with a load of near-
duplicate code that engineers now need to maintain, and in the worst case we end up
with some nasty bugs. Neither of these is particularly desirable, so it would probably be
much better to avoid using global state. The next subsection discusses an alternative.

9.2.2 Solution: Dependency-inject shared state

The previous chapter discussed the technique of dependency injection. This means
that we construct a class by “injecting” its dependencies rather than making it have a
hard-coded dependency on them. Dependency injection is also a great way to share
state between different classes in a more controlled way than using global state.

 The ShoppingBasket class that we saw in the previous subsection used a static
variable and static functions, meaning that state was global, so the first step is to change
this by making the ShoppingBasket class one that needs to be instantiated and ensur-
ing that each instance of the class has its own distinct state. Listing 9.9 shows what this
would look like. Some things to notice about the code are as follows:

 The items variable is no longer static. It’s now an instance variable, meaning
it’s associated with a specific instance of the ShoppingBasket class, so if we
create two instances of the ShoppingBasket class, they will both have different
and separate lists of items contained within them.

 The addItem() and getItems() functions are no longer static. This means
that they can only be accessed via an instance of the ShoppingBasket class, so
calls like ShoppingBasket.addItem(...) or ShoppingBasket.get-

Items() no longer work.

class ShoppingBasket {
 private final List<Item> items = [];

 void addItem(Item item) {
 items.add(item);
 }

 void List<Item> getItems() {
 return List.copyOf(items);
 }
}

The second step is to then dependency-inject an instance of ShoppingBasket into any
classes that need access to it. By doing this we can control which pieces of code share
the same basket and which pieces of code use a different basket. Listing 9.10 shows what

Listing 9.9 Modified ShoppingBasket class

An instance variable
(non-static)

Non-static
member
functions

251Beware of global state
the ViewItemWidget and ViewBasketWidgets look like if a ShoppingBasket is
dependency-injected via their constructors. Calls to addItem() and getItems() are
now on the specific instance of ShoppingBasket that was injected.

class ViewItemWidget {
 private final Item item;
 private final ShoppingBasket basket;

 ViewItemWidget(Item item, ShoppingBasket basket) {
 this.item = item;
 this.basket = basket;
 }
 ...

 void addItemToBasket() {
 basket.addItem(item);
 }
}

class ViewBasketWidget {
 private final ShoppingBasket basket;

 ViewBasketWidget(ShoppingBasket basket) {
 this.basket = basket;
 }

 void displayItems() {
 List<Item> items = basket.getItems();
 ...
 }
}

To demonstrate how we can now safely reuse the ShoppingBasket code, listing 9.11
creates two ShoppingBaskets: one for normal products and one for fresh products.
It also creates two ViewBasketWidgets: one for each basket. The two baskets are
completely independent of one another and will never interfere with each other. And
each ViewBasketWidget will display only items from the basket that it was con-
structed with.

ShoppingBasket normalBasket = new ShoppingBasket();
ViewBasketWidget normalBasketWidget =
 new ViewBasketWidget(normalBasket);

ShoppingBasket freshBasket = new ShoppingBasket();
ViewBasketWidget freshBasketWidget =
 new ViewBasketWidget(freshBasket);

Listing 9.10 ShoppingBasket dependency-injected

Listing 9.11 Separate ShoppingBasket instances

ShoppingBasket
dependency-injected

Called on specific instance
of ShoppingBasket that
was injected

252 CHAPTER 9 Make code reusable and generalizable
Figure 9.2 illustrates how the internal structure of the code now looks. Instead of
everything sharing the same global state for which items are in the basket, each
instance of ShoppingBasket is now self-contained.

Figure 9.2 By keeping state encapsulated within instances of classes, code reuse
becomes safe.

Global state is one of the most well-known and well-documented coding pitfalls. It can
be very tempting to use it because it can seem like a quick and easy way to share infor-
mation between different parts of a program. But using global state can make code
reuse completely unsafe. The fact that global state is used might not be apparent to
another engineer, so if they do try to reuse the code, this might result in weird behav-
ior and bugs. If we need to share state between different parts of a program, it’s usu-
ally safer to do this in a more controlled way using dependency injection.

9.3 Use default return values appropriately
Using sensible default values can be an excellent way to make software more user
friendly. Imagine if, upon opening a word-processing application, we are always
forced to choose exactly which font, text size, text color, background color, line spac-
ing, and line height we want before we can type a single word. The software would be
infuriating to use, and we’d likely just switch to an alternative.

 In reality, most word-processing applications provide a set of sensible defaults.
Upon opening the application, it’s configured with default choices for things like the
font, text size, and background color. This means we can start typing straight away and
edit these settings only if and when we want to.

List<Item> items

Original code using
ShoppingBasket

New code also using
ShoppingBasket

ShoppingBasket
Instance of

List<Item> items

ShoppingBasket
Instance of

Instance variables

Each instance of the
ShoppingBasket class
has its own separate
list of items.

Both pieces of code have their own separate
state. This means they will not have unintended
effects on each other.

253Use default return values appropriately
 Even in a piece of software that is not user-facing, default values can still be useful.
If a given class can be configured using 10 different parameters, then it makes callers'
lives easier if they don’t have to provide all these values. The class might therefore pro-
vide some default values for anything they don’t provide.

 Providing a default value often requires making two assumptions:

 What default value is sensible
 That higher layers of code don’t care if they’re getting a default value or a value

that was explicitly set

As we saw earlier, it’s worth considering the costs as well as the benefits when making
an assumption. Making assumptions like these in high-level code tends to have a lower
cost than making them in lower level code. Higher level code tends to be more tightly
coupled to a specific use case, meaning it’s easier to choose a default value that suits
all uses of the code. Lower level code, on the other hand, tends to solve more funda-
mental subproblems and therefore be reused more broadly for multiple use cases.
This makes it a lot harder to pick a default value that will suit all uses of the code.

9.3.1 Default return values in low-level code can harm reusability

Let’s imagine we are building a word-processing application. We just established that a
likely requirement is that we have some default choices for text styling to allow a user
to get going straight away. If the user wants to override these then they can. Listing
9.12 shows one way we might implement this for the choice of font. The User-
DocumentSettings class stores the user’s preferences for a particular document,
one of which is the font they would like to use. If they’ve not specified a font, then the
getPreferredFont() function returns a default of Font.ARIAL.

 This achieves the requirement that we just stated, but if anyone ever wants to reuse
the UserDocumentSettings class for a scenario where they don’t want Arial as the
default font, then they will have a hard time. It’s impossible to distinguish between the
case where a user specifically chose Arial and the case where they didn’t provide a
preference (meaning the default was returned).

class UserDocumentSettings {
 private final Font? font;
 ...

 Font getPreferredFont() {
 if (font != null) {
 return font;
 }
 return Font.ARIAL;
 }
}

Listing 9.12 Returning a default value

Default of Font.ARIAL
returned if no user preference

254 CHAPTER 9 Make code reusable and generalizable
This approach also harms adaptability: if the requirements around defaults ever
change it will be problematic. One example is that we start selling our word-processing
application to large organizations who want to be able to specify an organization-wide
default font. This is hard to implement because the UserDocumentSettings class
doesn’t allow us to determine when there is no user-provided preference (and thus
when the organization-wide default might apply).

 By bundling a default return value into the UserDocumentSettings class, we’ve
made an assumption about every potential layer of code above: that Arial is a sensible
default font. This will probably be fine initially, but if other engineers want to reuse
our code, or if requirements change, then this assumption can easily become prob-
lematic. Figure 9.3 shows how an assumption like this affects layers of code above. The
lower the level in the code that we define a default value, the more layers above we’re
making an assumption about.

Figure 9.3 Assumptions affect layers of code above. Returning a default value in low-level code
makes an assumption that will tend to affect many pieces of high-level code.

Chapter 2 emphasized the benefits of clean layers of abstraction. One of the key ways
of achieving this is to ensure that we separate distinct subproblems into distinct pieces
of code. The UserDocumentSettings class goes against this: retrieving some user

Low-level code

High-level code

High-level code

High-level code

High-level code

High-level code

High-level code

Lower level code tends to solve more
fundamenatal subproblems and is
therefore likely to be reused to help
solve multiple higher level problems.

An assumption here affects
many pieces of high-level code.

An assumption here
affects only one piece
of high-level code.

255Use default return values appropriately
preferences and defining some sensible defaults for our application are two separate
subproblems. But the UserDocumentSettings class bundles these together in a way
that makes them completely inseparable. This forces anyone using the User-
DocumentSettings class to also use our implementation of default values. It would
be better if we made these distinct subproblems so that higher layers of code can han-
dle defaults in whatever way is appropriate to them.

9.3.2 Solution: Provide defaults in higher level code

To remove the decision about a default value from the UserDocumentSettings
class, the simplest thing to do is just return null when there is no user-provided value.
The following listing shows what the class looks like with this change.

class UserDocumentSettings {
 private final Font? font;
 ...

 Font? getPreferredFont() {
 return font;
 }
}

This makes the provisioning of default values a distinct subproblem from that of han-
dling user settings. This means that different callers can solve this subproblem in
whatever way they want, making the code more reusable. In our higher level code, we
might now choose to define a dedicated class for solving the subproblem of provision-
ing default values (as shown in the following listing).

class DefaultDocumentSettings {
 ...

 Font getDefaultFont() {
 return Font.ARIAL;
 }
}

We might then define a DocumentSettings class that handles the logic to choose
between a default value and a user-provided value. Listing 9.15 shows this. The
DocumentSettings class provides a clean layer of abstraction to higher levels of
code that just want to know which settings to use. It hides all the implementation
details about default and user-provided values, but at the same time also ensures that
these implementation details are reconfigurable (by using dependency injection).
This ensures that the code is reusable and adaptable.

Listing 9.13 Returning null

Listing 9.14 Class for encapsulating defaults

Null returned if
no user preference

256 CHAPTER 9 Make code reusable and generalizable

class DocumentSettings {
 private final UserDocumentSettings userSettings;
 private final DefaultDocumentSettings defaultSettings;

 DocumentSettings(
 UserDocumentSettings userSettings,
 DefaultDocumentSettings defaultSettings) {
 this.userSettings = userSettings;
 this.defaultSettings = defaultSettings;
 }
 ...

 Font getFont() {
 Font? userFont = userSettings.getPreferredFont();
 if (userFont != null) {
 return userFont;
 }
 return defaultSettings.getFont();
 }
}

In listing 9.15, handling the null value using an if-statement is, admittedly, a little
clunky. In many languages (such as C#, JavaScript, and Swift) we can use the null
coalescing operator to make the code a lot less clunky. In most languages, this is written
as nullableValue ?? defaultValue, which will evaluate to the nullableValue
if it’s not null and the defaultValue otherwise. So in C#, for example, we could
write the getFont() function as follows:

Font getFont() {
 return userSettings.getPreferredFont() ??
 defaultSettings.getFont();
}

Default values can make code (and software) much easier to use, so they can be well
worth including. But it pays to be careful about where they are incorporated into the

Listing 9.15 Layer of abstraction for settings

Default return value parameters
Shifting the decision about what default value to use to the caller tends to make code
more reusable. But by returning null in languages that don’t support the null coalesc-
ing operator, we also force callers to write boilerplate code to handle this.

One approach that some pieces of code employ is to use a default return value
parameter. The Map.getOrDefault() function in Java is an example of this. If the
map contains a value for the key, then it will be returned. If the map does not contain
a value for the key, then the specified default value will be returned. A call to this
function looks like the following:

String value = map.getOrDefault(key, "default value");

This achieves the aim of allowing the caller to decide what default value is appropri-
ate, but without requiring the caller to handle a null value.

User settings and default values
are dependency injected.

?? is the null
coalescing operator.

257Keep function parameters focused
code. Returning a default value makes an assumption about all of the layers of code
above that use the value and can thus limit code reuse and adaptability. Returning
default values from low-level code can be particularly problematic. It can often be bet-
ter to simply return null and implement default values at a higher level, where
assumptions are more likely to hold.

9.4 Keep function parameters focused
In chapter 8 we saw the example of encapsulating various text styling options together.
We defined the TextOptions class to do this (repeated in the following listing).

class TextOptions {
 private final Font font;
 private final Double fontSize;
 private final Double lineHeight;
 private final Color textColor;

 TextOptions(
 Font font,
 Double fontSize,
 Double lineHeight,
 Color textColor) {
 this.font = font;
 this.fontSize = fontSize;
 this.lineHeight = lineHeight;
 this.textColor = textColor;
 }

 Font getFont() { return font; }
 Double getFontSize() { return fontSize; }
 Double getLineHeight() { return lineHeight; }
 Color getTextColor() { return textColor; }
}

In scenarios where a function needs all the pieces of information contained within a
data object or class, it makes sense for that function to take an instance of the object
or class as a parameter. It reduces the number of function parameters and saves inter-
mediate code from having to deal with the nuts-and-bolts details of the encapsulated
data. But in scenarios where a function only needs one or two pieces of information,
using an instance of the object or class as a parameter can harm the reusability of the
code. The following subsections explain why and demonstrate a simple alternative.

9.4.1 A function that takes more than it needs can be hard to reuse

Listing 9.17 shows part of the code for a text box widget that can be used within a user
interface. Some things to notice about the code are as follows:

 There are two public functions that the TextBox class exposes: setText-
Style() and setTextColor(). Both these functions take an instance of
TextOptions as a parameter.

 The setTextStyle() function makes use of all of the information within Text-
Options, so for this function it makes perfect sense to have this as the parameter.

Listing 9.16 TextOptions class

Encapsulates multiple
styling options together

258 CHAPTER 9 Make code reusable and generalizable
 The setTextColor() function only makes use of the text color information
from TextOptions. In this sense the setTextColor() function takes more than
it needs because it doesn’t need any of the other values within TextOptions.

Currently the setTextColor() function is only called from the setTextStyle()
function, so this doesn’t cause too many problems. But if anyone ever wants to reuse the
setTextColor() function, they might have a hard time, as we’ll see in a moment.

class TextBox {
 private final Element textContainer;
 ...

 void setTextStyle(TextOptions options) {
 setFont(...);
 setFontSize(...);
 setLineHight(...);
 setTextColor(options);
 }

 void setTextColor(TextOptions options) {
 textContainer.setStyleProperty(
 "color", options.getTextColor().asHexRgb());
 }
}

Now imagine that an engineer needs to implement a function that will style a TextBox
to be a warning. The requirement for this function is that it sets the text color to red but
leaves all other styling information unchanged. The engineer will most likely want to
reuse the TextBox.setTextColor() function to do this, but because that function
takes an instance of TextOptions as its parameter, this is not straightforward.

 Listing 9.18 shows the code that the engineer ends up writing. All they want to do
is set the text color to red, but they’ve had to construct an entire instance of Text-
Options with various irrelevant, made-up values in order to do this. This code is very
confusing: if we glance at it, we might be left with the impression that in addition to
setting the color to red, it also sets the font to Arial, the size to 12, and the line height
to 14. This is not the case, but we have to know details about the TextBox.setText-
Color() function for this to be apparent.

void styleAsWarning(TextBox textBox) {
 TextOptions style = new TextOptions(
 Font.ARIAL,
 12.0,
 14.0
 Color.RED);
 textBox.setTextColor(style);
}

Listing 9.17 A function that takes more than it needs

Listing 9.18 Calling a function that takes too much

Calls the setTextColor()
function

Takes an instance of
TextOptions as a parameter

Makes use of only
the text color

Irrelevant,
made-up values

259Consider using generics
The whole point in the TextBox.setTextColor() function is that it sets just the
color of the text. It’s therefore unnecessary for it to take an entire instance of Text-
Options as a parameter. And beyond being unnecessary, it becomes actively harmful
when anyone wants to reuse the function for a slightly different scenario. It would be
better if the function takes only what it needs.

9.4.2 Solution: Make functions take only what they need

The only thing that the TextBox.setTextColor() function reads from the Text-
Options is the text color. So instead of the function taking an entire instance of
TextOptions, it can just take an instance of Color as a parameter. The following list-
ing shows how the code for the TextBox class looks with this change.

class TextBox {
 private final Element textElement;
 ...

 void setTextStyle(TextOptions options) {
 setFont(...);
 setFontSize(...);
 setLineHight(...);
 setTextColor(options.getTextColor());
 }

 void setTextColor(Color color) {
 textElement.setStyleProperty("color", color.asHexRgb());
 }
}

The styleAsWarning() function now becomes a lot simpler and less confusing. There
is no need to construct an instance of TextOptions with irrelevant, made-up values:

void styleAsWarning(TextBox textBox) {
 textBox.setTextColor(Color.RED);
}

In general, making functions take only what they need results in code that is more
reusable and easier to understand. It’s still good to apply your judgment, though. If we
have a class that encapsulates 10 things together and a function that needs 8 of them,
then it might still make sense to pass the entire encapsulating object into the function.
The alternative of passing 8, unencapsulated values around can harm modularity (as
we saw in the previous chapter). As with many things, there is no one answer that
applies to every situation, but it’s good to be conscious of the tradeoffs we’re making
and the consequences they might have.

9.5 Consider using generics
Classes often contain (or reference) instances of other types or classes. An obvious
example of this is a list class. If we have a list of strings, then the list class contains
instances of the string class. Storing things in a list is a very general subproblem: in

Listing 9.19 A function that only takes what it needs

Calls setTextColor() with
just the text color

Takes an instance of
Color as a parameter

260 CHAPTER 9 Make code reusable and generalizable
some scenarios we might want a list of strings, but in other scenarios we might want a
list of integers. It would be quite annoying if we needed completely separate list
classes for storing strings and integers.

 Luckily many languages support generics (sometimes called templates). These allow
us to write a class without having to concretely specify all the types that it references.
In the case of a list, this allows us to easily use the same class to store any type we want.
Some examples of using a list to store different types are as follows:

List<String> stringList = ["hello", "world"];

List<Int> intList = [1, 2, 3];

If we’re writing some code that references another class, but we don’t particularly care
what that other class is, then it’s often a sign that we should consider using generics.
Doing this is often very little extra work but makes our code considerably more gener-
alizable. The following subsections provide a worked example.

9.5.1 Depending on a specific type limits generalizability

Imagine we’re creating a word guessing game. A group of players each submit words
and then take it in turns to act out one word at a time so that the other players can
guess it. One of the subproblems we need to solve is that of storing the collection of
words. In addition, we need to be able to select words one by one at random and also
be able to return a word to the collection if it couldn’t be guessed within the time limit
of each turn.

 We decide that we can solve this subproblem by implementing a randomized
queue. Listing 9.20 shows the code for the RandomizedQueue class that we imple-
ment. It stores a collection of strings. We can add new strings by calling add(), and we
can get and remove a random string from the collection by calling getNext(). The
RandomizedQueue class has a hard dependency on String, and as such it can never
be used to store any other type.

class RandomizedQueue {
 private final List<String> values = [];

 void add(String value) {
 values.add(value);
 }

 /**
 * Removes a random item from the queue and returns it.
 */
 String? getNext() {
 if (values.isEmpty()) {
 return null;
 }

Listing 9.20 Hard-coded use of String type

Hard-coded
dependency
on String

261Consider using generics
 Int randomIndex = Math.randomInt(0, values.size());
 values.swap(randomIndex, values.size() - 1);
 return values.removeLast();
 }
}

This implementation of RandomizedQueue solves our very specific use case of storing
words (which can be represented as strings), but it doesn’t generalize to solve the
same subproblem for other types. Imagine that another team within our company is
developing an almost identical game, where instead of players submitting words, they
submit pictures. Many of the subproblems between the two games are almost identi-
cal, yet because we hard coded our solutions to use strings, none of them generalize to
solve the subproblems the other team faces. It would be a lot better if the code gener-
alized to solve almost identical subproblems.

9.5.2 Solution: Use generics

In the case of the RandomizedQueue class, it’s trivially easy to make the code general-
izable using generics. Instead of having a hard-coded dependency on String, we can
instead specify a placeholder (or template) for a type that can then be dictated later
when the class is used. Listing 9.21 shows how the RandomizedQueue class looks with
the use of generics. The class definition begins with class RandomizedQueue<T>.
The <T> tells the compiler that we will use T as a placeholder for a type. We can then
use T throughout the class definition as though it were a real type.

class RandomizedQueue<T> {
 private final List<T> values = [];

 void add(T value) {
 values.add(value);
 }

 /**
 * Removes a random item from the queue and returns it.
 */
 T? getNext() {
 if (values.isEmpty()) {
 return null;
 }
 Int randomIndex = Math.randomInt(0, values.size());
 values.swap(randomIndex, values.size() - 1);
 return values.removeLast();
 }
}

The RandomizedQueue class can now be used to store anything we want, so in our
version of the game that uses words, we can define one to store strings as follows:

RandomizedQueue<String> words = new RandomizedQueue<String>();

Listing 9.21 Use of a generic type

T is specified as the placeholder
for the generic type.

The type
placeholder can be
used throughout
the class.

262 CHAPTER 9 Make code reusable and generalizable
And the other team who wants to use it to store pictures can easily define one to store
pictures as follows:

RandomizedQueue<Picture> pictures =
 new RandomizedQueue<Picture>();

As we break a high-level problem down into subproblems, we will often encounter
some that are quite fundamental and that might apply to all sorts of different use
cases. When the solution to a subproblem could easily apply to any data type, it’s often
very little effort to use generics instead of depending on a specific type. This can be an
easy win in terms of making code more generalizable and reusable.

Summary
 The same subproblems often crop up again and again, so making code reusable

can save your future self and your teammates considerable time and effort.
 Try to identify fundamental subproblems and structure the code in a way that

will allow others to reuse the solutions to specific subproblems even if they’re
solving a different high-level problem.

 Creating clean layers of abstraction and making code modular often result in
code that is a lot easier and safer to reuse and generalize.

 Making an assumption often has a cost in terms of making the code more frag-
ile and less reusable.

– Make sure the benefits of an assumption outweigh the costs.
– If an assumption does need to be made, then make sure it’s in an appropri-

ate layer of the code and enforce it if possible.

 Using global state often makes a particularly costly assumption that results in
code that is completely unsafe to reuse. In most scenarios, global state is best
avoided.

Generics and nullable types
In listing 9.21, the getNext() function returns null if the queue is empty. This is
fine as long as no one wants to store null values in the queue, which is probably a
reasonable assumption. (Although we may want to consider enforcing this assump-
tion using a check or an assertion, as discussed in chapter 3.)

If someone did want to store null values in the queue by creating something like a
RandomizedQueue<String?>, then this might be problematic. This is because it
would be impossible to distinguish between getNext() returning a null value from
within the queue and it signaling that the queue is empty. If we did want to support
this use case, then we could provide a hasNext() function that can be called to
check if the queue is nonempty before calling getNext().

Part 3

Unit testing

Testing is an essential part of creating code and software that work correctly
(and that keep working correctly). As discussed in chapter 1, there are different
levels of testing, but unit testing is usually the one engineers interact with most
in their everyday lives. This part on unit testing may be at the end of the book,
but please don’t infer from this that unit testing is an add-on consideration to be
addressed only after writing the code. As we saw in previous chapters, testing and
testability are things we often need to consider at all times when writing code.
And, as we’ll see in chapter 10, some schools of thought even go as far as to advo-
cate that the tests should be written before writing the code.

 This part of the book is split into two chapters. Chapter 10 covers some of the
foundational principles of unit testing: what we’re trying to achieve, and some
fundamental concepts like test doubles. Chapter 11 expands on this with a series
of more practical considerations and techniques that can help us achieve the
goals we identified in chapter 10.

264 CHAPTER

Unit testing principles
Every time an engineer modifies a line of code there is a risk that they might inad-
vertently break something or make a mistake. Even extremely small, innocent-look-
ing changes can have bad consequences: “It’s just a one line change” are famous
last words before a system crash. Because every change is risky, we need a way to
reassure ourselves that the code is working, both initially and whenever it’s modi-
fied. Tests are often the main thing that give us this reassurance.

 As engineers, we usually concentrate on writing automated tests. This means we
write test code that exercises the “real” code in order to check that it’s working cor-
rectly. Chapter 1 described how there are different levels of testing, and in particular,
how unit testing is the level of testing that engineers typically deal with most often in
their everyday coding. We’ll therefore concentrate on unit testing in these two final
chapters.

This chapter covers
 The basics of unit testing

 What makes a good unit test

 Test doubles, including when and how to use them

 Testing philosophies
265

266 CHAPTER 10 Unit testing principles
 At this point, it would probably be useful to provide a precise definition of exactly
what we mean by unit testing. But it’s unfortunately not a precisely defined term. Unit
testing is concerned with testing distinct units of code in a relatively isolated manner.
What exactly we mean by a unit of code can vary, but it often refers to a specific class,
function, or file of code. What we mean by in a relatively isolated manner can also vary
and be open to interpretation. Most pieces of code do not live in isolation; they
depend on a number of other pieces of code. As we’ll see in section 10.4.6, some engi-
neers make a point of trying to isolate code from its dependencies in unit tests, while
others prefer to include them.

 Unit testing may not be a precisely defined term, but this is usually not too much
of a problem. It’s best to not get too hung up on exactly what constitutes a unit test
and whether the tests we’re writing accurately fit a contrived definition for it. What
ultimately matters is that we ensure our code is well tested and that we do this in a way
that is maintainable. This chapter covers some of the key principles of unit testing that
can help us achieve this. Chapter 11 will build on this to discuss a number of practical
techniques.

10.1 Unit testing primer
If you’ve never written software in a professional environment, then you may have
never come across unit testing before. If this is the case, then this section should
quickly give you the important details that will be needed for this chapter and the
next to make sense.

 When it comes to unit testing, some important concepts and terminology to
remember are as follows:

 Code under test—Sometimes referred to as “the real code.” This refers to the
piece of code we are trying to test.

 Test code—This refers to the code that forms our unit tests. The test code will
typically be in a file separate from the “real code,” but there is often a one-to-
one mapping between files of real code and files of test code, so if we have some
real code in a file called GuestList.lang, then we might put the unit test
code in a file called GuestListTest.lang. Sometimes real code and test code
are kept next to each other in the same directory and sometimes test code is
kept in a completely different part of the codebase. This varies from language
to language and from team to team.

 Test case—Each file of test code is typically divided into multiple test cases,
where each test case tests a specific behavior or scenario. At a practical level, a
test case is usually just a function, and for anything other than the simplest of
test cases, it’s common to divide the code within each of them into three dis-
tinct sections as follows:
– Arrange—It’s often necessary to perform some setup before we can invoke

the specific behavior we want to test. This could involve defining some test
values, setting up some dependencies, or constructing a correctly configured
instance of the code under test (if it’s a class). This is often placed in a dis-
tinct block of code at the start of the test case.

267Unit testing primer
– Act—This refers to the lines of code that actually invoke the behavior that is
being tested. This typically involves calling one or more of the functions pro-
vided by the code under test.

– Assert—Once the behavior being tested has been invoked, the test needs to
check that the correct things actually happened. This typically involves
checking that a return value is equal to an expected value or that some resul-
tant state is as expected.

 Test runner—As the name suggests, a test runner is a tool that actually runs the
tests. Given a file of test code (or several files of test code), it will run each test
case and output details of which pass and which fail.

Figure 10.1 illustrates how some of these concepts fit together.

void testGetAllGuests_vipGuestsOnly() {
 Guest guest1 = new Guest("Test person 1");
 Guest guest2 = new Guest("Test person 2");
 GuestList guestList = new GuestList();
 guestList.addVipGuest(guest1);
 guestList.addVipGuest(guest2);

 List<Guest> result = guestList.getAllGuests();

 assertThat(result).containsExactly(guest1, guest2);
}

class GuestList {
 ...
 void addVipGuest(Guest guest) { ... }
 void addNormalGuest(Guest guest) { ... }
 Boolean isVipGuest(Guest guest) { ... }
 Boolean isGuest(Guest guest) { ... }
 Set<Guest> getAllGuests() { ... }
 ...
}

Code under test GuestList.lang

class GuestListTest {
 ...
 void testAddVipGuest_notAlreadyAGuest() { ... }
 void testAddVipGuest_alreadyANormalGuest() { ... }
 ...
 void testGetAllGuests_noGuests() { ... }
 void testGetAllGuests_vipAndNormalGuests() { ... }
 void testGetAllGuests_vipGuestsOnly() { ... }
 ...
}

Test code GuestListTest.lang

There is often a one-to-one
mapping between a file of
“real code” and a file of
test code that unit tests it.

The tests will usually be split into many test cases.
Each test case tests a different behavior or scenario.

The test code
depends on the
code under test
(so it can call it
to test it).

Arrange

Act

Assert

It’s common to
divide a test case
into three distinct
sections:

The name of a test case typically describes
what behavior or scenario it’s testing.

A test case

Figure 10.1
How various
unit testing
concepts fit
together

268 CHAPTER 10 Unit testing principles
NOTE: GIVEN, WHEN, THEN Some engineers prefer the terms given, when, and
then over arrange, act, and assert. There are some nuances around which test-
ing philosophies advocate these different sets of terms, but in the context of
the code within a test case, they are equivalent.

The importance of testing is so often stated that it can start to sound like a cliché. Cli-
ché or not, testing is important. In most professional software engineering environ-
ments these days, pretty much every piece of “real code” is expected to have an
accompanying unit test. And every behavior that the “real code” exhibits is expected
to have an accompanying test case. This is the ideal and it’s what we should strive for.

 You’ll quickly discover that not every piece of existing code lives up to this ideal, and
in some codebases, testing can be particularly poor. But this is no excuse for lowering
our own standards away from the ideal. Bad or inadequate testing is often an accident
waiting to happen. Most engineers who’ve been building software for any length of
time can probably recount several horror stories that have resulted from poor testing.

 Having a lack of tests is the most obvious way to have poor testing, but it’s by no
means the only way to have poor testing. In order to have good testing, we don’t just
need tests, we need good tests. The next section defines what we mean by this.

10.2 What makes a good unit test?
At face value, unit testing might seem quite simple: we just need to write some test
code to check that the real code is working. Unfortunately, this is deceptive, and over
the years many engineers have learned how easy it is to get unit testing wrong. When
things go wrong with unit testing it can lead to code that is very hard to maintain and
bugs going unnoticed. It’s therefore important to think about what makes a good unit
test. For this we’ll define five key features that a good unit test should exhibit:

 Accurately detects breakages—If the code is broken, a test should fail. And a test
should only fail if the code is indeed broken (we don’t want false alarms).

 Agnostic to implementation details—Changes in implementation details should
ideally not result in changes to tests.

 Well-explained failures—If the code is broken, the test failure should provide a
clear explanation of the problem.

 Understandable test code—Other engineers need to be able to understand what
exactly a test is testing and how it is doing it.

 Easy and quick to run—Engineers usually need to run unit tests quite often
during their everyday work. A slow or difficult-to-run unit test will waste a lot of
engineering time.

The following subsections explore these goals in more detail.

10.2.1 Accurately detects breakages

The main and most obvious purpose of unit tests is to ensure that the code is not bro-
ken: it does what it’s meant to do and doesn’t contain bugs. If the code under test is

269What makes a good unit test?
broken in any way, it should either not compile or a test should fail. This serves two
very important roles:

 It gives us initial confidence in the code. Regardless of how carefully we code, it’s
almost impossible to avoid making some number of mistakes. By writing a thor-
ough set of tests alongside any new code or code changes we create, it’s likely
that we’ll discover and fix many of these mistakes before the code is even sub-
mitted to the codebase.

 It protects against future breakage. Chapter 3 discussed how a codebase is often a
busy place, with multiple engineers constantly making changes. It’s highly likely
that at some point another engineer will make a change that inadvertently
breaks our code. Our only effective defenses against this are to ensure that
either the code stops compiling or a test starts failing when this occurs. It’s not
possible to engineer everything so that the code stops compiling when some-
thing is broken, so making sure that all the correct behaviors are locked in with
tests is absolutely vital. A piece of functionality being broken by a code change
(or some other event), is known as a regression. Running tests with the aim of
detecting any such regressions is known as regression testing.

It’s also important to consider another aspect of accuracy: a test should only fail if the
code under test is genuinely broken. It might seem like this would naturally follow
from what we just discussed, but in practice it often doesn’t. As anyone with experi-
ence of logical fallacies will appreciate, “a test will definitely fail if the code is broken”
does not necessarily imply that “a test will fail only if the code is broken.”

 A test that sometimes passes and sometimes fails despite the code under test being
fine is referred to as flakey. This is usually a result of indeterministic behavior in the
test, such as randomness, timing-based race conditions, or depending on an external
system. The most obvious downside of flakey tests is that they waste engineers’ time
because they end up having to investigate failures that turn out to be nothing. But
flakey tests are actually much more dangerous than they might initially seem. Anyone
who's familiar with the fable “The Boy Who Cried Wolf” will appreciate why: if a test
keeps giving a false alarm that the code is broken, then engineers will learn to ignore
it. They might even go as far as turning the test off if it’s really annoying. If no one
pays attention to test failures anymore, then it’s no different to the situation where
there are no tests. There is then very little protection against future breakages, and
the chances of bugs being introduced becomes high. Ensuring that tests fail when
something is broken, and only when something is broken, is incredibly important.

10.2.2 Agnostic to implementation details

Broadly speaking there are two kinds of changes an engineer might make to a code-
base:

 A functional change—This modifies the externally visible behavior of a piece of
code. Examples of this are adding a new feature, fixing a bug, or handling an
error scenario in a different way.

270 CHAPTER 10 Unit testing principles
 A refactoring—This is a structural change to the code, such as splitting a large
function into smaller ones or moving some utility code from one file to another
so it’s easier to reuse. In theory, if a refactoring is done correctly, then it should
not modify any of the externally visible behaviors (or functional attributes) of
the code.

The first of these (a functional change) is very much something that affects anyone
using our code, and as such any callers of our code need to be carefully considered
before we make this kind of change. Because a functional change modifies the behav-
ior of our code, we would hope and expect that it will also require modifying the tests.
If it doesn’t, that probably suggests that our original tests were insufficient.

 The second of these (a refactoring) is something that should not affect anyone
using our code. We’re changing implementation details, but not any behaviors that
anyone else should care about. However, modifying code is always risky, and refactor-
ing is no different. Our intention is to modify just the structure of the code, but how
do we know for sure that we’re not inadvertently modifying a behavior of the code in
the process?

 To help answer this, let’s consider two approaches that we might have taken when
we were writing the original unit tests for our code (long before we decided to do this
refactoring):

 Approach A—As well as locking in all the behaviors of our code, the tests also
lock in various implementation details. We test several private functions by mak-
ing them visible to tests, we simulate state by directly manipulating private
member variables and dependencies, and we also verify the state of various
member variables after the code under test has run.

 Approach B—Our tests lock in all the behaviors but no implementation details.
We make a point of using the code’s public API to set up state and to verify
behaviors wherever we can. And we never manipulate or verify anything using
private variables or functions.

Now let’s consider what happens when we come along several months later and refac-
tor the code. If we perform the refactoring correctly, then only implementation
details should be changed, and no externally visible behaviors should be affected. If
externally visible behaviors are affected, then we have made a mistake. Let’s consider
what happens if we’d used the different testing approaches:

 Approach A—Regardless of whether we performed the refactoring correctly, the
tests will start failing, and we’ll need to make lots of changes to them to make
them pass again. We now have to test different private functions, set up state in
different private member variables and dependencies, and verify a different set
of member variables after the code under test has run.

 Approach B—If we did the refactoring correctly, the tests should still pass (with-
out us having to modify them). If a test does fail, then we clearly made a

271What makes a good unit test?
mistake, because this means we’ve inadvertently changed an externally visible
behavior.

With approach A, it’s very hard to have any confidence about whether we’ve made a
mistake when we refactor the code. The tests fail and need modifying either way, and
figuring out which of these modifications to the tests are to be expected and which are
not is likely not an easy task. With approach B, it’s incredibly easy to have confidence
in our refactoring: if the tests still pass then everything is fine; if a test fails then we
made a mistake.

Code is very often refactored. In mature codebases, the amount of refactoring can
often exceed the amount of new code written, so ensuring that code does not break
when it’s refactored is of paramount importance. By making tests agnostic to imple-
mentation details, we can ensure that there is a reliable and clean signal that anyone
refactoring code can use to see if they made a mistake.

10.2.3 Well-explained failures

As we saw a couple of subsections ago, one of the main purposes of tests is to protect
against future breakages. A common scenario is that another engineer makes a
change that inadvertently breaks someone else’s code. A test then starts failing, which
alerts the engineer that they have broken something. That engineer will then go and
look at the test failure to figure out what is wrong. The engineer might be quite unfa-
miliar with the code that they have inadvertently broken, so if the test failure does not
indicate what is broken, then they will likely waste a lot of time trying to figure it out.

 To ensure that tests clearly and precisely explain what is broken, it’s necessary to
think about what kind of failure message the test will produce when something is
wrong and whether this will be useful to another engineer. Figure 10.2 shows two
potential failure messages we might see when a test fails. The first of these flags that
something is wrong with getting events but gives us absolutely no information about
what exactly is wrong. The second message, on the other hand, gives quite a clear
description of what is wrong. We can see that the problem is that events are not being
returned in chronological order.

Don’t mix functional changes and refactorings
When making a change to the codebase, it’s usually best to either make a functional
change or do a refactoring but not to do both at the same time.

A refactoring should not change any behaviors, whereas a functional change should.
If we make both a functional change and do a refactoring at the same time, it can
become hard to reason about which changes in behavior are the expected ones from
the functional change and which might be due to a mistake we’ve made in the refac-
toring. It’s usually better to do the refactoring and then make the functional change
separately. This makes it a lot easier to isolate the cause of any potential problems.

272 CHAPTER 10 Unit testing principles
Figure 10.2 A test failure that clearly explains what is wrong is a lot more useful than
one that just indicates that something is wrong.

One of the best ways to ensure that test failures are well explained is to test one thing
at a time and use descriptive names for each test case. This often results in many small
test cases that each lock in one specific behavior rather than one large test case that
tries to test everything in one go. When a test starts failing, it’s quite easy to see exactly
which behaviors have been broken by checking the names of the test cases that fail.

10.2.4 Understandable test code

Up until this point, we’ve assumed that a test failing indicates that the code is broken.
But this is not entirely true; to be more precise, a test failing indicates that the code
now behaves in a different way. Whether the fact that it behaves in a different way
actually constitutes it being broken (or not) depends on the circumstance. Another
engineer might be deliberately modifying the functionality of the code to meet a new
requirement, for example. In this case, the change in behavior is intentional.

 The engineer making this change will obviously have to be careful, but once
they’ve done their diligence and made sure the change is safe, they’ll need to update
the tests to reflect the new functionality. As we’ve seen before, modifying code is risky,
and this also applies to the test code itself. Let’s say a piece of code has three behaviors
that are locked in by the tests. If an engineer is making intentional changes to only
one of these behaviors, then ideally they should need to make changes to only test

Test case testGetEvents failed:
Expected: [Event@ea4a92b, Event@3c5a99da]
But was actually: [Event@3c5a99da, Event@ea4a92b]

A poorly explained test failure
Name of test case doesn’t indicate
which behavior is being tested

Failure message is hard to decipher.

A well-explained test failure

Test case testGetEvents_inChronologicalOrder failed:
Contents match, but order differs
Expected:
 [<Spaceflight, April 12, 1961>, <Moon Landing, July 20, 1969>]
But was actually:
 [<Moon Landing, July 20, 1969>, <Spaceflight, April 12, 1961>]

Name of test case makes it clear
which behavior is being tested

Failure message is clear.

273Focus on the public API but don’t ignore important behaviors
cases that test that behavior. Test cases that test the other two behaviors should ideally
be left untouched.

 For an engineer to have any confidence that their change is affecting only the
desired behavior, they need to be able to know which parts of the test they’re affecting
and whether it’s expected that they should need updating. For this to be the case they
need to understand the tests, both what different test cases are testing and how they
are testing them.

 As we’ll see in the next chapter, two of the most common ways this can go wrong
are testing too many things at once and using too much shared test setup. Both of
these can lead to tests that are very hard to understand and reason about. This makes
future modifications to the code under test much less safe, because engineers will
struggle to understand whether specific changes they’re making are safe.

 Another reason to strive for making test code understandable is that some engi-
neers like to use the tests as a kind of instruction manual for the code. If they’re won-
dering how to use a particular piece of code or what functionality it provides, then
reading through the unit tests can be a good way to find this out. If the tests are diffi-
cult to understand, they won’t make a very useful instruction manual.

10.2.5 Easy and quick to run

Most unit tests are run quite frequently. One of the most important functions of a unit
test is to prevent broken code from being submitted to the codebase. Many codebases,
therefore, will employ presubmit checks that ensure that any relevant tests pass before
a change can be submitted. If the unit tests take an hour to run, this will slow every
engineer down, because submitting a code change will take a minimum of an hour
regardless of how small or trivial it is. In addition to being run before submitting
changes to the codebase, engineers often run unit tests numerous times while devel-
oping the code, so this is another way that slow unit tests slow engineers down.

 Another reason to keep tests fast and easy to run is to maximize the chance that engi-
neers actually test stuff. When tests are slow, testing becomes painful, and if testing is
painful, engineers tend to do less of it. This is probably not something that many self-
respecting engineers would readily admit to, but from experience it seems to be a real-
ity. Making tests as easy and quick to run as possible not only makes engineers more effi-
cient, but it also tends to result in more extensive and more thorough testing.

10.3 Focus on the public API but don’t ignore
important behaviors
We just discussed why it’s important for unit tests to be agnostic to implementation
details. Chapter 2 stated that the different aspects of a piece of code can be split into
two distinct parts: the public API and implementation details. If one of our aims is to
avoid testing implementation details, this implies that we should try to test a piece of
code using only its public API.

 “Test using only the public API” is, in fact, a very common piece of advice with regard
to unit testing. If you already have some knowledge of the subject, then you will likely

274 CHAPTER 10 Unit testing principles
have heard this before. By focusing on the public API, it forces us to concentrate on the
behaviors that users of a piece of code ultimately care about rather than details that are
just a means to an end. This helps ensure that we test the things that actually matter, and
in the process also tends to keep tests agnostic to implementation details.

 To demonstrate the benefits of focusing on the public API when testing, consider
the function in the following snippet for calculating kinetic energy (in joules). The
thing that anyone calling this function cares about is that it returns the correct value
for the given mass (in kilograms) and speed (in meters per second). The fact that the
function calls Math.pow() is an implementation detail. We could replace Math.pow
(speedMs, 2.0) with speedMs * speedMs and the function would behave in exactly
the same way as far as anyone calling it is concerned:

Double calculateKineticEnergyJ(Double massKg, Double speedMs) {
 return 0.5 * massKg * Math.pow(speedMs, 2.0);
}

By concentrating on the public API, we’re forced to write tests that lock in the behav-
iors that callers actually care about. We might, therefore, write a series of test cases
that check that the expected value is returned for given inputs. The following snippet
shows one such test case. (Note that because the return value is a double, we check that it’s
within a certain range rather than checking for exact equality.)

void testCalculateKineticEnergy_correctValueReturned() {
 assertThat(calculateKineticEnergyJ(3.0, 7.0))
 .isWithin(1.0e-10)
 .of(73.5);
}

If we felt the temptation to write a test that checked that the calculateKinetic-
EnergyJ() function calls Math.pow(), then the principle of “test using only the pub-
lic API” would guide us away from this. This prevents us from coupling our tests to
implementation details and ensures that we concentrate on testing the things that call-
ers actually care about. With a simple example like this, it seems quite clear-cut. But
things can get more convoluted when we have more complicated pieces of code to test.

10.3.1 Important behaviors might be outside the public API

The calculateKineticEnergyJ() function we just saw is quite self-contained. The
only inputs it takes are via parameters, and the only effect it has is to return an answer.
In reality, code is rarely so self-contained. It often depends on numerous other pieces
of code and testing can become more nuanced if some of these dependencies provide
external inputs to the code or if the code causes side effects in them.

 In such scenarios, what exactly is meant by “the public API” can be subjective, and
I’ve encountered situations where engineers quote “test using only the public API” as
justification for leaving important behaviors untested. Their argument is that if a
behavior can’t be triggered or checked using what they consider the public API, then
it shouldn’t be tested. This is where it becomes important to use common sense and
think pragmatically.

Assert that the value is within
0.0000000001 of 73.5.

275Focus on the public API but don’t ignore important behaviors
 The definition of implementation
details given in chapter 2 is too sim-
plistic when it comes to unit testing.
Whether something is an implemen-
tation detail or not is in fact some-
what context specific. Chapter 2
discussed this from the perspective
of layers of abstraction, where pieces
of code depend on one another. In
that scenario all that one piece of
code needs to know about another
are the things in the public API, so
everything else is an implementation
detail. But when it comes to testing,
there may be other things that the
test code needs to know about that
are not considered part of the public
API. To better explain this, let’s con-
sider an analogy.

 Imagine that we work for a company that runs a network of coffee vending
machines. Figure 10.3 shows one of the models of machine that our company makes
and deploys. Our task is to test it to check that it works correctly. What constitutes the
public API of this machine is open to some amount of interpretation, but an engineer
might define it as “the way in which a customer buying a cup of coffee is expected to
interact with the machine.” If we take this definition, then the public API is quite sim-
ple: a customer taps their credit card on the reader, selects which drink they would
like, and the machine returns the chosen drink in a cup. There are also some error
scenarios that the public API might need to signal to the customer, such as their credit
card being declined or the machine being out of service.

 At first glance, it seems like we can test the main behaviors of the vending machine
using what we’ve defined to be the public API: paying for and selecting a drink and
checking that the machine returns the correct choice. But this isn’t entirely true, and
from our point of view as testers of the machine, we need to consider more than just
the public API. For starters, the vending machine has some dependencies that we
need to set up. We can’t test the machine until we’ve plugged it into a power socket,
filled up the water tank, and put some beans in the bean hopper. To a customer, all
these things are implementation details, but to us testers, there’s no feasible way we
could test the machine without first setting up these things.

 There may also be behaviors that we need to test that are not part of the public API
and that a customer would consider implementation details. This vending machine
happens to be a “smart” vending machine. It’s connected to the internet and will auto-
matically notify a technician whenever the water or coffee beans are running low.
(This is an example of an intentional side effect that the vending machine can cause.)
Customers probably aren’t aware of this feature, and even if they were they would

TAP CREDIT
CARD HERE

AMERICANO

ESPRESSO

RISTRETTO

TAP CREDIT CARD ON READER
AND SELECT DRINK

Figure 10.3 A coffee vending machine has a
public API, but we can’t fully test the machine
using only the public API.

276 CHAPTER 10 Unit testing principles
consider it an implementation detail. But it is, nonetheless, an important behavior
that the vending machine exhibits and is therefore something that we need to test.

 On the other hand, there are many things that are definitely implementation
details to both customers and us testers. An example of this is how the machine heats
water in order to make coffee: does it use a thermoblock or a boiler? This is not some-
thing we should test, because it’s an internal detail of the machine, which doesn’t
directly matter. A coffee connoisseur might argue that it does matter because a boiler
produces better tasting coffee. But if we unpack their argument, it still suggests that
the method of heating the water is an implementation detail. What the connoisseur
ultimately cares about is the taste of the coffee, and the method of heating the water is
just a means to that end, so if we are worried about connoisseurs complaining, we
should make sure that the taste of the coffee is something we test (not the method of
heating the water). Figure 10.4 illustrates the different dependencies that the vending
machine has and how tests might need to interact with them.

Figure 10.4 Tests should aim to test things using the public API whenever possible. But it can
often be necessary for tests to interact with dependencies that are not part of the public API in
order to perform setup and to verify desired side effects.

Coffee vending
machine

Public API

Electricity

Tests should aim to not test
implementation details. Thermoblock or

boiler?

Water

Coffee beans

Non-public API inputs

Technician
notification

Non-public API
side effects

Credit card payment
processing

Credit card

Drink selection

Coffee cup

Coffee drink

Public API inputs Public API return types

Tests should aim to test things using the public API whenever possible...

... but tests may need to set
up certain dependencies...

... and tests may need to
verify certain side effects.

Depends

on

Depends

on

Depends on

Implementation details

Water heating

277Focus on the public API but don’t ignore important behaviors
Testing the vending machine is analogous to unit testing a piece of code. To demon-
strate this with an example, consider listing 10.1. The AddressBook class allows a
caller to look up the email address for a user. It achieves this by fetching the email
address from a server. It also caches any previously fetched email addresses to prevent
overloading the server with repeat requests. As far as anyone using this class is con-
cerned, they call lookupEmailAddress() with a user ID and get back an email
address (or null if there is no email address), so it would be reasonable to say that the
lookupEmailAddress() function is the public API of this class. This means that the
fact that it depends on the ServerEndPoint class and caches email addresses are
both implementation details as far as users of the class are concerned.

class AddressBook {
 private final ServerEndPoint server;
 private final Map<Int, String> emailAddressCache;
 ...

 String? lookupEmailAddress(Int userId) {
 String? cachedEmail = emailAddressCache.get(userId);
 if (cachedEmail != null) {
 return cachedEmail;
 }
 return fetchAndCacheEmailAddress(userId);
 }

 private String? fetchAndCacheEmailAddress(Int userId) {
 String? fetchedEmail = server.fetchEmailAddress(userId);
 if (fetchedEmail != null) {
 emailAddressCache.put(userId, fetchedEmail);
 }
 return fetchedEmail;
 }
}

The public API reflects the most important behavior of the class: looking up an email
address given a user ID. But we can’t test this unless we set up (or simulate) a
ServerEndPoint. In addition to this, another important behavior is that repeated
calls to lookupEmailAddress() with the same user ID don’t result in repeated calls
to the server. This is not part of the public API (as we defined it), but it’s still an
important behavior because we don’t want our server to get overloaded, and we
should therefore test it. Note that the thing we actually care about (and should test) is
that repeat requests are not sent to the server. The fact that the class achieves this
using a cache is just a means to this end and is, therefore, an implementation detail
even to tests. Figure 10.5 illustrates the dependencies of the AddressBook class and
how tests might need to interact with them.

Listing 10.1 AddressBook class

Implementation details as far as
users of the class are concerned

The public
 API

More
implementation
details

278 CHAPTER 10 Unit testing principles
Figure 10.5 We can’t fully test all the important behaviors of the AddressBook class using what we
defined as the public API.

Where possible we should test the code’s behaviors using the public API. This is likely
to be applicable for any behaviors that occur purely via public function parameters,
return values, or error signaling. But depending on how we choose to define the pub-
lic API of our code, there may be scenarios where it’s not possible to test all behaviors
using only the public API. This might happen if it’s necessary to set up various depen-
dencies or verify that certain side effects have or haven’t occurred. Some examples of
this might be as follows:

 Code that interacts with a server. In order to test the code, it might be necessary to
set up or simulate the server so that it can provide the necessary inputs. We
might also want to verify what side effects the code has on the server, such as
how frequently it calls it and that requests are in a valid format.

 Code that saves values to, or reads values from, a database. We might need to test the
code with several different values in the database to exercise all the behaviors.
And we’ll likely want to check what values the code saves to the database (a side
effect).

“Test using only the public API” and “don’t test implementation details” are both
excellent pieces of advice, but we need to appreciate that they are guiding principles

AddressBook

Implementation details
ServerEndPoint

Map
Tests should aim to not test
implementation details.

Email address

caching

Non-public API inputs Non-public API
side effects

Public API inputs Public API return types

We can test the main behaviors using the public API...

... but the tests need to set
up or simulate the server...

... and the tests need to
verify that repeat calls are
not made to the server.

Depends on

ServerEndPoint

Int
(userId)

String
(email address)

Public API
lookupEmailAddress()

279Test doubles
and that the definitions of “public API” and “implementation details” can be subjec-
tive and context specific. What ultimately matters is that we properly test all the
important behaviors of the code, and there may be occasions where we can’t do this
using only what we consider the public API. But we should still stay alert to the desire
to keep tests agnostic to implementation details as much as possible, so we should
stray away from the public API only when there really is no alternative.

10.4 Test doubles
It was said at the start of this chapter that unit tests aim to test a unit of code in a “rela-
tively isolated manner.” But as we’ve just seen, code tends to depend on other things,
and to fully test all the behaviors of the code we often need to set up inputs and verify
side effects. But, as we’ll see in a moment, it’s not always feasible or desirable to use
real dependencies in tests.

 An alternative to using a real dependency is to use a test double. A test double is an
object that simulates a dependency, but in a way that makes it more suitable to use in
tests. We’ll start off by exploring some of the reasons for using a test double. We’ll
then look at three specific kinds of test double: mocks, stubs, and fakes. Along the way,
we’ll see how mocks and stubs can be problematic and why using a fake is often pref-
erable if one is available.

10.4.1 Reasons for using a test double

Three common reasons why we might want to use a test double are as follows:

 Simplifying a test—Some dependencies are tricky and painful to use in tests. A
dependency might require lots of configuration or might require us to also con-
figure loads of its sub-dependencies. If this is the case, our tests may become
complicated and tightly coupled to implementation details. Using a test double
instead of the real dependency might simplify things.

 Protecting the outside world from the test—Some dependencies have real-world side
effects. If one of the code’s dependencies sends requests to a real server or
writes values to a real database, this might have bad consequences for users or
business-critical processes. In such scenarios, we might use a test double to pro-
tect our systems in the outside world from the actions of the test.

 Protecting the test from the outside world—The outside world can be indeterminis-
tic. If one of the code’s dependencies reads a value from a real database that
other systems are writing to, then the returned value might change over time.
This could result in our tests being flakey. A test double, on the other hand, can
be configured to always behave in the same deterministic way.

The following subsections explore these reasons in more detail and illustrate how a
test double might be used in these scenarios.

SIMPLIFYING A TEST

Some dependencies can require a lot of effort to set up. The dependency itself might
require us to specify lots of parameters, or it might have many sub-dependencies that

280 CHAPTER 10 Unit testing principles
all require configuring. In addition to setting things up, it may also be necessary for
our tests to verify desired side effects in sub-dependencies. In a situation like this,
things can get out of hand. We might end up with a mountain of setup code within
our tests, and they may also end up being tightly coupled to a lot of implementation
details (figure 10.6).

Figure 10.6 It can sometimes be impractical to use real dependencies in tests. This can be the
case if a dependency has lots of sub-dependencies that would also need to be interacted with.

In contrast, if we use a test double, then we bypass the need to set up the real depen-
dency or to verify things in its sub-dependencies. The test code needs to interact with
only the test double to set things up and verify side effects (which should both be rela-
tively simple). Figure 10.7 illustrates how much simpler the test becomes.

 Another motivation for simplifying things might be to make the tests run faster;
this might be applicable if one of the dependencies invokes a computationally expen-
sive algorithm or requires lots of slow setup.

 As we’ll explore in later sections, there are scenarios where using a test double can
actually make a test more coupled to implementation details. And setting up a test
double can also sometimes be more complicated than using a real dependency, so the
arguments for and against using a test double to simplify a test need to be considered
on a case-by-case basis.

Code under test

Dependency

Sub-dependency Sub-dependency

If using a real dependency in a test requires
setting up or verifying things in sub-dependencies
or sub-sub-dependencies, then things can get out
of hand. It might be better to use a test double.

Depends on

Sub-sub-dependencies

Test code

Test sets up inputs and
verifies side effects

Test exercises
the code

281Test doubles
PROTECTING THE OUTSIDE WORLD FROM THE TEST

In addition to the desire to test code in a relatively isolated manner, there may also be
inescapable reasons that mean we have to test it in isolation. Imagine we work on a sys-
tem that handles payments and we’re unit testing a piece of code that debits money
from a customer’s bank account. When the code runs in the real world, one of the
side effects will be to take real money out of a real customer’s account. The code
achieves this by depending on a class called BankAccount, which in turn interacts
with the real-world banking system. If we use an instance of the BankAccount class in
our test, then real money will be taken from a real account whenever the test runs
(figure 10.8). This is almost certainly not a good idea, because there may be bad
consequences, such as affecting real people’s money or corrupting the company’s
auditing and accounting.

Code under test

Depends on

Test code

Test sets up inputs and
verifies side effects

Test exercises
the code

 Dependency
Test double of

By using a test double, we can avoid the
need to interact with sub-dependencies.

Figure 10.7 A test double can simplify the test by removing the need to worry about
sub-dependencies.

Code under test

Test code

BankAccount BankingBackend

Real people’s accounts
Real money

Real banking system

Causes
side effect in

Causes
side effect in

Test exercises
the code

Test asserts result
in bank account

The test also has the inadvertant effect of
taking real money out of a real account.
This is almost certainly not something that
should happen when the test runs.

Figure 10.8 If a dependency causes real-world side effects, we’ll likely want to use a test double
instead of using the real dependency.

282 CHAPTER 10 Unit testing principles
This is an example where we need to protect the outside world from the effects of the
test. We can achieve this by using a test double instead of a real instance of Bank-
Account. This isolates the test from the real banking system and means that no real
bank accounts or money are affected when the test runs (figure 10.9).

Figure 10.9 A test double can protect real systems in the outside world from side effects.

A test that has the side effect of taking real money from a real bank account is perhaps
an extreme example, but the point that it demonstrates is widely applicable. A more
likely scenario might be a test that has the side effect of sending requests to a real
server or writing values to a real database. While these might not be catastrophic, they
could lead to problems such as the following:

 Users seeing weird and confusing values—Imagine we run an ecommerce business
and one of our tests writes records to our actual database. These “test” records
might then be visible to users. A user visiting the homepage might find that half
the products displayed are called “fake test item” and cause an error if they try
to add any of them to their basket. Most users would probably not find this to
be a good experience.

 It might affect our monitoring and logging—A test might deliberately send an
invalid request to a server in order to test that the resultant error response is
handled correctly. If this request goes to a real server, then the error rate for
that server will be increased. This might cause engineers to think there is a
problem when there is not. Or if people learn to expect this baseline number of
errors from the tests, then they might not notice an increase in the error rate
when real errors occur in the system.

Code under test

Test code

BankingBackend

Real people’s accounts
Real money

Real banking system

Causes
side effect in

Test exercises
the code

Test asserts result in
bank account double

The instance of BankAccount used
in the test is now completely isolated
from the real banking system.

 BankAccount
Test double of

283Test doubles
It’s important that tests don’t cause side effects in customer-facing or business-critical
systems. These systems need to be protected from the tests, and a test double can be
an effective way to achieve this by keeping the test isolated.

PROTECTING THE TEST FROM THE OUTSIDE WORLD

In addition to protecting the outside world from the test, another reason to use a test
double might be the reverse of this: to protect the test from the outside world. Real
dependencies can have nondeterministic behaviors. Examples of this might be a real
dependency reading a regularly changing value from a database or generating some-
thing like an ID using a random number generator. Using a dependency like this in a
test might result in the test being flakey, and as we saw previously, this is probably
something we want to avoid.

 To demonstrate this and how a test double can help, let’s consider another thing
that a piece of code might want to do with a bank account: read the balance. The bal-
ance of a real bank account potentially changes quite often, as the owner of the account
pays money in and takes money out. Even if we create a special account that we use just
for testing, the balance might still change as interest gets paid in or an account fee is
deducted every month, so if a test makes use of a real bank account and the code under
test reads the balance, the test might end up being flakey (figure 10.10).

 The solution is to isolate the test from the real banking system, and once again this
is something we can do with a test double. If we use a test double for the BankAc-
count, then the test code can configure it with a predetermined value for the account
balance (figure 10.11). This means that the account balance will always be the same
deterministic value every time the test runs.

Code under test

Test code

BankAccount BankingBackend

Account balances
often change.

Real banking system

reads
balance from

reads
balance from

Test exercises
the code.

The test will start failing whenever
the account balance changes. This
might result in the test being flakey.

Test asserts that
the expected
value is returned.

The returned balance is
effectively indeterministic.

Figure 10.10 If a dependency behaves in an indeterministic manner it can cause tests to be flakey.

284 CHAPTER 10 Unit testing principles
As we’ve seen, there are a few reasons we might decide that it’s not desirable or feasi-
ble to use a real dependency. Once we’ve determined that we’d rather use a test dou-
ble, we need to decide which kind of test double to use. The following subsections will
discuss three of the most common choices: mocks, stubs, and fakes.

10.4.2 Mocks

A mock simulates a class or interface by providing no functionality other than just
recording what calls are made to member functions. In doing so, it also records what
values are supplied for arguments when a function is called. A mock can be used in a
test to verify that the code under test makes certain calls to functions provided by a
dependency. A mock is, therefore, most useful for simulating a dependency that the
code under test causes a side effect in. To demonstrate how a mock might be used,
let’s consider the bank account example we saw earlier, but this time with some
accompanying code.

 Listing 10.2 shows the code for a PaymentManager class. This class contains a
settleInvoice() function, which, as the name suggests, allows callers to settle an
invoice by debiting the balance from the customer’s bank account. If we are writing
the unit tests for this class, then one of the behaviors that we will obviously need to test
is that the correct amount is indeed debited from the customer’s account. The
customerBankAccount parameter is an instance of BankAccount, so in order to do
this, our test will have to interact with this dependency to verify that the desired side
effect is caused.

Code under test

Test code

BankingBackend

Account balances
often change.

Real banking system

reads
balance from

Test exercises
the code.

The instance of BankAccount used in the test
is completely isolated from the real banking
system. It will always return the same balance
(the one that the test code sets it up with).

Test asserts that
the expected
value is returned.

 BankAccount
Test double of

Test sets up the
desired balance
in the double
before exercising
the code.

Figure 10.11 A test double can protect the test from any indeterministic behavior that a real
dependency might exhibit.

285Test doubles

e

class PaymentManager {
 ...

 PaymentResult settleInvoice(
 BankAccount customerBankAccount,
 Invoice invoice) {
 customerBankAccount.debit(invoice.getBalance());
 return PaymentResult.paid(invoice.getId());
 }
}

BankAccount is an interface and the class that implements it is called BankAccount-
Impl. Listing 10.3 shows the BankAccount interface alongside the BankAccount-
Impl class. We can see that the BankAccountImpl class depends on Banking-
Backend, which connects to the real banking system. As we saw previously, this means
that we can’t use an instance of BankAccountImpl in our test, because this would
result in moving real money around in real accounts (we need to protect the outside
world from the test).

interface BankAccount {
 void debit(MonetaryAmount amount);
 void credit(MonetaryAmount amount);
 MonetaryAmount getBalance();
}

class BankAccountImpl implements BankAccount {
 private final BankingBackend backend;
 ...

 override void debit(MonetaryAmount amount) { ... }
 override void credit(MonetaryAmount amount) { ... }
 override MonetaryAmount getBalance() { ... }
}

An alternative to using BankAccountImpl is to use a mock of the BankAccount inter-
face and then check that the debit() function is called with the correct arguments.
Listing 10.4 shows the code for the test case that checks that the account is debited with
the correct amount. Some things to notice about the code are as follows:

 A mock of the bank account interface is created by calling createMock(Bank-
Account).

 The mockAccount is passed to the settleInvoice() function (the code
under test).

 The test verifies that mockAccount.debit() was called once with the
expected amount (in this case the invoice balance).

Listing 10.2 Code that depends on BankAccount

Listing 10.3 BankAccount interface and implementation

Takes an instance
of BankAccount
as a parameter

The debiting of the balance
from the account is one of th
behaviors we need to test.

Depends on BankingBackend,
which affects real money
in real bank accounts

286 CHAPTER 10 Unit testing principles

void testSettleInvoice_accountDebited() {
 BankAccount mockAccount = createMock(BankAccount);
 MonetaryAmount invoiceBalance =
 new MonetaryAmount(5.0, Currency.USD);
 Invoice invoice = new Invoice(invoiceBalance, "test-id");
 PaymentManager paymentManager = new PaymentManager();

 paymentManager.settleInvoice(mockAccount, invoice);

 verifyThat(mockAccount.debit)
 .wasCalledOnce()
 .withArguments(invoiceBalance);
}

The use of a mock has allowed us to test the PaymentManager.settleInvoice()
function without having to use the BankAccountImpl class. This has successfully pro-
tected the outside world from the test, but as we’ll see in section 10.4.4, there is a real
risk that the test might now be unrealistic and not catch important bugs.

10.4.3 Stubs

A stub simulates a function by returning predefined values whenever the function is
called. This allows tests to simulate dependencies by stubbing certain member func-
tions that the code under test will call and use the return values from. Stubs are there-
fore useful for simulating dependencies that code takes an input from.

 Although there is a clear difference between mocks and stubs, in casual conversa-
tion, many engineers just use the word mock to refer to both. And in many testing tools
that provide stubbing functionality, it’s necessary to create what the tool refers to as a
mock, even if we only want to use it to stub certain member functions. The code exam-
ples in this subsection demonstrate this.

 Let’s imagine that we now need to modify the PaymentManager.settle-
Invoice() function to check if the bank account has a sufficient balance before it
tries to debit the bank account. This will help minimize the number of declined trans-
actions, which might otherwise affect a customer’s credit rating with their bank. The
following listing shows what the code looks like after we make this change.

class PaymentManager {
 ...

 PaymentResult settleInvoice(
 BankAccount customerBankAccount,
 Invoice invoice) {
 if (customerBankAccount.getBalance()
 .isLessThan(invoice.getBalance())) {
 return PaymentResult.insufficientFunds(invoice.getId());
 }
 customerBankAccount.debit(invoice.getBalance());
 return PaymentResult.paid(invoice.getId());
 }
}

Listing 10.4 A test case that uses a mock

Listing 10.5 Code that calls getBalance()

Mock of BankAccount
created

The code under
test is called with
mockAccount.The test asserts that

mockAccount.debit() is called
with expected arguments.

The code relies on the
value returned by customer-
BankAccount.getBalance().

287Test doubles

ce
h we
b.

is
d
.

The new functionality that we’ve added to the PaymentManager.settleInvoice()
function means that there are now more behaviors that we need to add test cases for,
such as the following:

 That an “insufficient funds” PaymentResult is returned if the funds are
insufficient

 That no attempt is made to debit the account if the funds are insufficient
 That the account is debited when the funds are sufficient

It’s clear that we need to write some unit test cases that will be dependent on the bank
account balance. If we use BankAccountImpl in the test, then the code under test
will be reading the balance of a real bank account and, as we established earlier, this is
liable to change from time to time, so using BankAccountImpl would introduce
indeterminism into our tests and potentially make them flakey.

 This is a scenario where we need to protect the tests from the outside world. We
can do this by using a stub for the BankAccount.getBalance() function. We can
configure the stub to return a predetermined value whenever it is called. This allows
us to test that the code behaves correctly while also ensuring that the tests are deter-
ministic and non-flakey.

 Listing 10.6 shows the test case for the first of the behaviors just mentioned (that
an “insufficient funds” PaymentResult is returned if the funds are insufficient).
Some things to notice about the code are as follows:

 As mentioned earlier, with many testing tools it’s necessary to create what the
tool refers to as a mock even if we want to use it only to create stubs, so we cre-
ate a mockAccount, but then stub the getBalance() function rather than
actually making use of any mocking functionality.

 The mockAccount.getBalance() stub is configured to return the predeter-
mined value of $9.99.

void testSettleInvoice_insufficientFundsCorrectResultReturned() {
 MonetaryAmount invoiceBalance =
 new MonetaryAmount(10.0, Currency.USD);
 Invoice invoice = new Invoice(invoiceBalance, "test-id");
 BankAccount mockAccount = createMock(BankAccount);
 when(mockAccount.getBalance())
 .thenReturn(new MonetaryAmount(9.99, Currency.USD));
 PaymentManager paymentManager = new PaymentManager();

 PaymentResult result =
 paymentManager.settleInvoice(mockAccount, invoice);

 assertThat(result.getStatus()).isEqualTo(INSUFFICIENT_FUNDS);
}

The use of a stub has allowed us to protect the test from the outside world and prevent
flakiness. This (and the previous subsection) demonstrates how mocks and stubs can

Listing 10.6 A test case that uses a stub

The BankAccount interfa
is “mocked” even thoug
only want to create a stu

The mockAccount
.getBalance() function
stubbed and configure
to always return $9.99

 The test asserts that an “insufficient
funds” result is returned.

288 CHAPTER 10 Unit testing principles
help us isolate our tests by simulating dependencies that might otherwise be problem-
atic. Sometimes this is necessary, but there are also downsides to using mocks and
stubs. The next subsection explains two of the main drawbacks.

10.4.4 Mocks and stubs can be problematic

There are different schools of thought regarding the usage of mocks and stubs, which
we’ll look at in section 10.4.6. Before we discuss these different schools of thought
(and before we look at fakes), it’s important to discuss some of the problems that
mocks and stubs can cause. Two of the main downsides of using them are as follows:

 They can lead to tests that are unrealistic if a mock or a stub is configured to
behave in a way that is different to the real dependency.

 They can cause tests to become tightly coupled to implementation details,
which, as we saw earlier, can make refactoring difficult.

 The next two subsections explore these in more detail.

MOCKS AND STUBS CAN LEAD TO UNREALISTIC TESTS

Whenever we mock or stub a class or function we (as the engineers writing the test)
have to decide how that mock or stub will behave. There’s a real risk that we make it
behave in a way that differs from how the class or function behaves in real life. If we do
this, our test might pass and we’ll think that everything is working, but when our code
then runs in real life it may behave in an incorrect or buggy way.

 Earlier, when we used a mock to test the PaymentManager.settleInvoice()
function, we tested the scenario where the invoice has a positive balance of $5, mean-
ing that the customer owes the company $5. But invoices can also have negative bal-
ances, for example, if a customer receives a refund or compensation for something, so
this is also a scenario that we should test. At face value, this might seem quite easy. We
just copy the code for the previous test case we saw and use a value of minus $5 for the
invoice balance. Listing 10.7 shows the code we end up with for our test case. The test
passes, so our conclusion is that the PaymentManager.settleInvoice() function
can handle negative balance invoices fine. Unfortunately, as we’ll see in a moment,
this is not the case.

void testSettleInvoice_negativeInvoiceBalance() {
 BankAccount mockAccount = createMock(BankAccount);
 MonetaryAmount invoiceBalance =
 new MonetaryAmount(-5.0, Currency.USD);
 Invoice invoice = new Invoice(invoiceBalance, "test-id");
 PaymentManager paymentManager = new PaymentManager();

 paymentManager.settleInvoice(mockAccount, invoice);

 verifyThat(mockAccount.debit)
 .wasCalledOnce()
 .withArguments(invoiceBalance);
}

Listing 10.7 Testing a negative invoice balance

A negative
invoice balance

The test asserts that mockAccount.debit() is
called with the expected negative amount.

289Test doubles
Our test case asserts that our code calls mockAccount.debit() with the correct
invoice balance (in this case a negative one). But this doesn’t mean that calling Bank-
AccountImpl.debit() with a negative value will actually do what we expect it to in
real life. While writing the PaymentManager class, we’ve made the implicit assump-
tion that debiting a negative amount from a bank account will result in money being
added to the account. By using a mock, we then repeated this assumption in our test.
This means that the validity of this assumption never actually gets tested, and it’s basi-
cally a tautology that the test will pass, regardless of whether the code actually works in
real life.

 In reality, our assumption is unfortunately not valid. If we look more closely at the
BankAccount interface, we see the following documentation indicating that an
ArgumentException will be thrown if either debit() or credit() are called with a
negative value:

interface BankAccount {
 /**
 * @throws ArgumentException if called with a negative amount
 */
 void debit(MonetaryAmount amount);

 /**
 * @throws ArgumentException if called with a negative amount
 */
 void credit(MonetaryAmount amount);

 ...
}

Clearly there is a bug in the PaymentManager.settleInvoice() function, but
because we used a mock in our test, it didn’t reveal this bug. This is one of the major
drawbacks of using a mock. The engineer writing the test has to decide how the mock
will behave, and if they made a mistake in understanding how the real dependency
works, then they will likely make the same mistake when they configure the mock.

 This same problem can apply to the usage of stubs. Using a stub will test that our
code behaves how we want it to when a dependency returns a certain value. But it tests
nothing about whether that is actually a realistic value for that dependency to return.
In the previous subsection we used a stub to simulate the BankAccount.getBal-
ance() function, but we might have failed to properly consider the code contract of
this function. Imagine we look more closely at the BankAccount interface and dis-
cover the following documentation. This is something we overlooked when configur-
ing our stub:

interface BankAccount {
 ...

 /**
 * @return the bank account balance rounded down to the
 * nearest multiple of 10. E.g. if the real balance is
 * $19, then this function will return $10. This is for
 * security reasons, because exact account balances are

290 CHAPTER 10 Unit testing principles
 * sometimes used by the bank as a security question.
 */
 MonetaryAmount getBalance();
}

NOTE: ROUNDING DOWN A BALANCE The example of getBalance() returning a
rounded value is to illustrate how it can be easy to overlook certain details when
stubbing a function. In reality, rounding an account balance down is probably
not a particularly robust security feature. There are still ways an attacker could
figure out the exact balance, for example by repeatedly crediting the account
with $0.01 until the value returned by getBalance() changes.

MOCKS AND STUBS CAN CAUSE TIGHT COUPLING BETWEEN TESTS AND IMPLEMENTATION DETAILS

In the previous subsection, we saw how calling customerBankAccount.debit()
doesn’t work if the invoice has a negative balance, and how using a mock meant that this
bug went unnoticed during testing. If an engineer does eventually notice this bug, they
might solve it by introducing an if-statement into the settleInvoice() function,
such as the one in the following snippet. This calls customerBankAccount.debit()
if the balance is positive and customerBankAccount.credit() if it’s negative:

PaymentResult settleInvoice(...) {
 ...
 MonetaryAmount balance = invoice.getBalance();
 if (balance.isPositive()) {
 customerBankAccount.debit(balance);
 } else {
 customerBankAccount.credit(balance.absoluteAmount());
 }
 ...
}

If the engineer uses mocks to test this code, then they will end up with various test
cases where they verify that customerBankAccount.debit() is called and others
where they verify that customerBankAccount.credit() is called:

void testSettleInvoice_positiveInvoiceBalance() {
 ...
 verifyThat(mockAccount.debit)
 .wasCalledOnce()
 .withArguments(invoiceBalance);
}

...

void testSettleInvoice_negativeInvoiceBalance() {
 ...
 verifyThat(mockAccount.credit)
 .wasCalledOnce()
 .withArguments(invoiceBalance.absoluteAmount());
}

This tests that the code calls the expected functions, but it doesn’t directly test the
behavior that someone using the class actually cares about. The behavior they care

291Test doubles
about is that the settleInvoice() function transfers the correct amount of money
to or from the account. The exact mechanics of this is just a means to an end, so
whether the credit() or debit() function is called is an implementation detail.

 To emphasize this, let’s consider a refactoring that an engineer might decide to
perform. They notice that several pieces of code in different parts of the codebase
contain this clunky if-else statement to switch between calling debit() and
credit(). To improve the code, they decide to move this functionality into the
BankAccountImpl class where it can be reused. This means that a new function is
added to the BankAccount interface called transfer():

interface BankAccount {
 ...

 /**
 * Transfers the specified amount to the account. If the
 * amount is negative, then this has the effect of transferring
 * money from the account.
 */
 void transfer(MonetaryAmount amount);
}

The settleInvoice() function is then refactored to call the new transfer() func-
tion as follows:

PaymentResult settleInvoice(...) {
 ...
 MonetaryAmount balance = invoice.getBalance();
 customerBankAccount.transfer(balance.negate());
 ...
}

This refactoring hasn’t changed any behaviors; it’s changed only an implementation
detail. But many of the tests now fail because they are using mocks that expect a call to
either debit() or credit(), which now no longer occurs. This is the opposite of the
goal we stated in section 10.2.2: that tests should be agnostic to implementation
details. The engineer who performed the refactoring will have to modify many test
cases to make them pass again, so it’s hard for them to have confidence that their
refactoring didn’t inadvertently modify any behaviors.

 As mentioned earlier, there are different schools of thought around the usage of
mocks and stubs, but in my opinion it’s best to keep use of them to a minimum. If
there’s no feasible alternative, then using a mock or a stub in a test is better than not
having a test. But if it’s feasible to use a real dependency or a fake (which we’ll discuss
in the next subsection), then this is usually preferable in my opinion.

10.4.5 Fakes

A fake is an alternative implementation of a class (or interface) that can safely be used
in tests. A fake should accurately simulate the public API of the real dependency, but the
implementation is typically simplified. This can often be achieved by storing state in a
member variable within the fake instead of communicating with an external system.

292 CHAPTER 10 Unit testing principles
 The whole point in a fake is that its code contract is identical to the real depen-
dency, so if the real class (or interface) doesn’t accept a certain input, then the fake
shouldn’t either. This typically means that a fake should be maintained by the same
team that maintains the code for the real dependency, because if the code contract of
the real dependency ever changes, then the code contract of the fake will also need to
be updated.

 Let’s consider the BankAccount interface and BankAccountImpl class that we saw
earlier. If the team that maintains these implements a fake bank account, it might look
something like listing 10.8. Some things to notice about the code are as follows:

 FakeBankAccount implements the BankAccount interface, so during testing
it can be used in any code that requires an implementation of BankAccount.

 Instead of communicating with the banking backend system, the fake just keeps
track of the account balance using a member variable.

 The fake throws an ArgumentException if either of debit() or credit()
are called with a negative amount. This enforces the code contract and means
that the fake behaves in exactly the same way as real implementations of Bank-
Account. Details like this are what make fakes so useful. If an engineer writes
code that erroneously calls either of these functions with a negative value, then
a test using a mock or a stub may not catch it, whereas a test using this fake will
catch a bug like that.

 The getBalance() function returns the balance rounded down to the nearest
10, because this is what the code contract states and it’s how real implementa-
tions of BankAccount behave. Again, this maximizes the chance that any bugs
resulting from this slightly surprising behavior will be caught during testing.

 In addition to implementing all the functions in the BankAccount interface,
the fake also provides a getActualBalance() function that tests can use to
verify the actual balance of the fake account. This is important because the
getBalance() function rounds the balance down, meaning that tests can’t use
it to accurately verify the state of the account.

class FakeBankAccount implements BankAccount {
 private MonetaryAmount balance;

 FakeBankAccount(MonetaryAmount startingBalance) {
 this.balance = startingBalance;
 }

 override void debit(MonetaryAmount amount) {
 if (amount.isNegative()) {
 throw new ArgumentException("Amount can't be negative");
 }
 balance = balance.subtract(amount);
 }

Listing 10.8 A fake BankAccount

Implements the
BankAccount interface

Keeps track of state using
member variables

ArgumentException
thrown if amount
negative

293Test doubles
 override void credit(MonetaryAmount amount) {
 if (amount.isNegative()) {
 throw new ArgumentException("Amount can't be negative");
 }
 balance = balance.add(amount);
 }

 override void transfer(MonetaryAmount amount) {
 balance.add(amount);
 }

 override MonetaryAmount getBalance() {
 return roundDownToNearest10(balance);
 }

 MonetaryAmount getActualBalance() {
 return balance;
 }
}

Using a fake instead of a mock or a stub can avoid the problems we identified in the pre-
vious subsection, as we'll now see.

FAKES CAN RESULT IN MORE REALISTIC TESTS

In the previous subsection, we saw the example of a test case that aimed to verify that
the PaymentManager.settleInvoice() function correctly handled an invoice
with a negative balance. In that example, the test case used a mock to verify that
BankAccount.debit() was called with the correct negative amount. This resulted in
a test that passed even though the code was broken (because, in reality, debit()
doesn’t accept negative amounts). If we’d used a fake in the test case instead of a
mock, then this bug would have been revealed.

 If we rewrite the negative invoice balance test case using a FakeBankAccount,
then it would look like listing 10.9. When paymentManager.settleInvoice() is
called, the subsequent call to FakeBankAccount.debit() with a negative amount
will throw an exception and cause the test to fail. This will make us immediately aware
that there is a bug in the code and prompt us to fix it before submitting anything to
the codebase.

void testSettleInvoice_negativeInvoiceBalance() {
 FakeBankAccount fakeAccount = new FakeBankAccount(
 new MonetaryAmount(100.0, Currency.USD));
 MonetaryAmount invoiceBalance =
 new MonetaryAmount(-5.0, Currency.USD);
 Invoice invoice = new Invoice(invoiceBalance, "test-id");
 PaymentManager paymentManager = new PaymentManager();

 paymentManager.settleInvoice(fakeAccount, invoice);

 assertThat(fakeAccount.getActualBalance())
 .isEqualTo(new MonetaryAmount(105.0, Currency.USD));
}

Listing 10.9 Negative invoice balance test using a fake

ArgumentException
thrown if amount
negative

Returns the balance rounded
down to the nearest 10

Additional function to allow tests to
check the actual (unrounded) balance

Fake account created with
an initial balance of $100

Invoice balance
of minus $5

Code under test called
with fakeAccount

The test asserts that
new balance is $105.

294 CHAPTER 10 Unit testing principles
The main reason for tests is that they should fail when there is a bug in the code, so
the test case is now useful because it does exactly this.

FAKES CAN DECOUPLE TESTS FROM IMPLEMENTATION DETAILS

Another benefit of using a fake instead of a mock or a stub is that it tends to result in
the test being less tightly coupled to implementation details. We saw earlier how using
a mock led to tests failing when an engineer performed a refactoring. This was
because the tests using a mock verified that specific calls were made to either
debit() or credit() (which is an implementation detail). In contrast, if the test
uses a fake, then instead of verifying these implementation details, it will instead assert
that the final account balance is correct:

...
 assertThat(fakeAccount.getActualBalance())
 .isEqualTo(new MonetaryAmount(105.0, Currency.USD));
...

The code under test can transfer money into or out of the account using whatever
function calls it likes, but as long as the end result is the same, the test will pass. This
makes the test much more agnostic to implementation details; a refactoring that
doesn’t change any behaviors will not result in the tests failing.

 Not every dependency will have an equivalent fake. It depends on whether the
team that maintains the real dependency has created one and whether they are will-
ing to maintain it. But we can be proactive; if our team owns a certain class or inter-
face and we know that it would be unsuitable to use the real thing in a test, it might
well be worth us implementing a fake for it. This will likely make our own testing bet-
ter and may also benefit numerous other engineers who depend on our code.

 If it’s not feasible to use a real dependency in a test, then it might be necessary to
use a test double. If this is the case and a fake exists, then, in my opinion, it’s prefera-
ble to use that fake rather than a mock or a stub. I say “in my opinion” because there
are different schools of thought around mocking and stubbing, which we’ll briefly dis-
cuss in the next subsection.

10.4.6 Schools of thought on mocking

Broadly speaking there are two schools of thought around the usage of mocks (and
stubs) in unit tests:

 Mockist—Sometimes referred to as the “London school of thought.” Propo-
nents argue that engineers should avoid using real dependencies in tests and
instead use mocks. Avoiding the usage of real dependencies and using lots of
mocks often also implies the need to use stubs for any parts of dependencies
that provide inputs, so using a mockist approach often also involves stubbing as
well as mocking.

295Test doubles
 Classicist—Sometimes referred to as the “Detroit school of thought.” Propo-
nents argue that the usage of mocks and stubs should be kept to a minimum
and that engineers should prefer using real dependencies in tests. When it’s not
feasible to use a real dependency, then using a fake is the next preference.
Mocks and stubs should only be used as a last resort when it’s not feasible to use
either the real dependency or a fake.

One of the main practical differences between tests written using these two
approaches is that mockist tests tend to test interactions, while classicist tests tend to
test the resultant state in the code and its dependencies. In this sense, a mockist
approach tends to lock in how the code under test does something, while a classicist
approach tends to lock in what the end result of running the code is (without neces-
sarily caring how this is achieved).

 Some arguments in favor of a mockist approach are as follows:

 It keeps unit tests more isolated. Using a mock means that a test doesn’t also end up
testing things about dependencies. This means that a breakage in a particular
piece of code will cause test failures only in the unit tests for that code and not
the tests for other code that depends on it.

 It can make tests easier to write. Using real dependencies requires figuring out
which of them are needed for the test and how to correctly configure and verify
things in them. A mock or a stub, on the other hand, is often trivial to set up
because it can be done without needing to actually construct a dependency and
worry about configuration of sub-dependencies.

Some arguments in favor of using a classicist approach and against using a mockist
approach are as follows (both these were discussed in the preceding subsections):

 A mock tests that the code makes a particular call, but it doesn’t test that the
call is actually valid. Using lots of mocks (or stubs) can result in tests that pass
even though the code is completely broken.

 A classicist approach can result in tests that are more agnostic to implementa-
tion details. With a classicist approach, the emphasis is on testing an end result:
what the code returns or the resultant state. And as far as the test is concerned,
it doesn’t matter how the code achieves this. This means that the tests fail only
when behaviors change, and not when implementation details change.

If I’m honest, in my early days as a software engineer, I had no idea that these two
approaches existed as formalized schools of thought. Without knowing it at the time, I
seemed to naturally adopt more of a mockist approach and would write unit tests
where the majority of dependencies were mocked or stubbed out. Admittedly, I hadn’t
really put much thought into this at the time, and my main reason for using what
turned out to be a mockist approach was just that it seemed to make my life easier. But

296 CHAPTER 10 Unit testing principles
I came to regret this, as it resulted in tests that didn’t properly test that things actually
worked and made refactoring the code very difficult.

 Having tried both approaches, my preference is now firmly in favor of the classicist
school of thought, and the content in this chapter reflects that. But it’s important to
emphasize that this is an opinion and not every engineer would agree with it. If you’re
interested in reading a more detailed description of mockist and classicist schools of
thought, then the second half of this article by Martin Fowler discusses the topic in
lots of detail: http://mng.bz/N8Pv.

10.5 Pick and choose from testing philosophies
As you may have already discovered, there are multiple philosophies and methodolo-
gies around testing, and they will sometimes be presented as an all-or-nothing kind of
thing: you either subscribe to every part of a philosophy or none of the parts. In real-
ity, life isn’t like this, and we’re free to pick and choose from different philosophies as
we see fit.

 One example of a testing philosophy is test-driven development (TDD). The most
famous part of this philosophy states that engineers should write tests before they
write any implementation code. While many recognize the theoretical benefits of this,
I don’t often meet engineers who actually do this in practice; it’s just not how they
choose to work. This doesn’t mean that they completely ignore everything that the
TDD philosophy has to say; it just means they don’t fully subscribe to it. Many of them
still aim to achieve a lot of other things prescribed under TDD, such as keeping tests
isolated, keeping them focused, and not testing implementation details.

 Some examples of testing philosophies and methodologies are as follows:

 Test-driven development1—TDD advocates a process whereby a test case is written
before writing any real code; a bare minimum of real code is then written to
make the test case pass, and the code is then refactored to improve the struc-
ture or remove duplication. Engineers are encouraged to repeat these steps in
small iterations. As just mentioned, TDD proponents usually also advocate vari-
ous other best practices such as keeping test cases isolated and focused and not
testing implementation details.

 Behavior-driven development2—BDD can mean slightly different things to different
people, but the essence of it is a focus on identifying behaviors (or functionality)
that the software should exhibit (often from the point of view of a user, a cus-
tomer, or the business). These desired behaviors are captured and recorded in a

1 Some argue that TDD can trace its origins back to the 1960s, but the more modern, formalized philosophy
most often associated with the term is widely credited to Kent Beck in the 1990s. (Beck famously claims to
have “rediscovered” TDD rather than having invented it.)

2 The idea of behavior-driven development is widely attributed to Daniel Terhorst-North in the 2000s. A copy
of the article in which Terhorst-North introduced the idea can be found here: https://dannorth.net/intro-
ducing-bdd/.

https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
http://mng.bz/N8Pv

297Summary
format that the software can then be developed against. Tests should reflect
these desired behaviors rather than attributes of the software itself. Exactly how
these behaviors are captured and recorded, which stakeholders are involved in
the process, and how formalized it is can vary a lot from one organization to
another.

 Acceptance test–driven development—Again, ATDD can mean slightly different
things to different people, and the degree to which it overlaps with (or fits
alongside) BDD varies between definitions. ATDD involves identifying behaviors
(or functionality) that the software should exhibit (often from a customer’s
point of view) and creating automated acceptance tests that will verify if the soft-
ware as a whole is functioning as required. Similar to TDD, these tests should be
created before implementing the real code. In theory, once the acceptance tests
all pass, the software is complete and is ready to be accepted by the customer.

Testing philosophies and methodologies tend to document ways of working that some
engineers have found to be effective. But at the end of the day the goal we’re ulti-
mately trying to achieve matters more than the method of working we chose to get
there. The important thing is to ensure that we write good, thorough tests and pro-
duce high-quality software. Different people work in different ways; if you work most
effectively by following a given philosophy or methodology to the letter, then great,
but if you work more effectively another way, then that’s absolutely fine.

Summary
 Pretty much every piece of “real code” submitted to the codebase should have

an accompanying unit test.
 Every behavior that the “real code” exhibits should have an accompanying test

case that exercises it and checks the result. For anything other than the simplest
of test cases, it’s common to divide the code within each of them into three dis-
tinct sections: arrange, act, and assert.

 The key features of a good unit test are as follows:

– Accurately detects breakages
– Is agnostic to implementation details
– Has well-explained failures
– Has understandable test code
– Is easy and quick to run

 Test doubles can be used in a unit test when it’s infeasible or impractical to use
a real dependency. Some examples of test doubles are the following:

– Mocks
– Stubs
– Fakes

298 CHAPTER 10 Unit testing principles
 Mocks and stubs can result in tests that are unrealistic and that are tightly cou-
pled to implementation details

 There are different schools of thought on the usage of mocks and stubs. My
opinion is that real dependencies should be used in tests where possible. Fail-
ing that, a fake is the next best option, while mocks and stubs should be used
only as a last resort.

Unit testing practices
Chapter 10 identified a number of principles that can be used to guide us toward
writing effective unit tests. This chapter builds on these principles to cover a num-
ber of practical techniques that we can apply in our everyday coding.

 Chapter 10 described the key features that good unit tests should exhibit. The
motivation for many of the techniques described in this chapter directly follow
from these, so as a reminder, the key features are as follows:

 Accurately detects breakages—If the code is broken, a test should fail. And a test
should fail only if the code is indeed broken (we don’t want false alarms).

 Agnostic to implementation details—Changes in implementation details should
ideally not result in changes to tests.

This chapter covers
 Effectively and reliably unit testing all the

behaviors of a piece of code

 Ensuring that tests are understandable and that
failures are well explained

 Using dependency injection to ensure that code is
testable
299

300 CHAPTER 11 Unit testing practices
 Well-explained failures—If the code is broken, the test failure should provide a
clear explanation of the problem.

 Understandable test code—Other engineers need to be able to understand what
exactly a test is testing and how it is doing it.

 Easy and quick to run—Engineers usually need to run unit tests quite often
during their everyday work. A slow or difficult-to-run unit test will waste a lot of
engineering time.

It’s by no means a given that the tests we write will exhibit these features, and it’s all
too easy to end up with tests that are ineffective and unmaintainable as a result. Luck-
ily there are a number of practical techniques that we can apply to maximize the
chance that our tests do exhibit these features. The following sections cover some of
the main ones.

11.1 Test behaviors not just functions
Testing a piece of code is a bit like working through a to-do list. There are a number of
things that the code under test does (or will do if we’re writing the tests before writing
the code), and we need to write a test case to test each of these. But as with any to-do
list, a successful outcome is contingent on the correct things actually being on the list.

 A mistake that engineers sometimes make is to look at a piece of code and add
only function names to their to-do list of things to test, so if a class has two functions,
then an engineer might write only two test cases (one for each function). We estab-
lished in chapter 10 that we should test all the important behaviors that a piece of
code exhibits. The problem with concentrating on testing each function is that a func-
tion can often exhibit more than one behavior and a behavior can sometimes span
across multiple functions. If we write only one test case per function, it’s likely that we
might miss some important behaviors. It’s better to fill our to-do list with all the behav-
iors we care about rather than just the function names we see.

11.1.1 One test case per function is often inadequate

Imagine we work for a bank maintaining a system that automatically assesses mortgage
applications. The code in listing 11.1 shows the class that makes the decision of
whether a customer can get a mortgage and, if so, how much they can borrow. There
are quite a few things going on in the code, such as the following:

 The assess() function calls a private helper function to determine whether
the customer is eligible for a mortgage. A customer is eligible if they

– have a good credit rating,
– have no existing mortgage, and
– are not banned by the company.

 If the customer is eligible, then another private helper function is called to
determine the maximum loan amount for the customer. This is calculated as
their yearly income minus their yearly outgoings, multiplied by 10.

301Test behaviors not just functions

class MortgageAssessor {
 private const Double MORTGAGE_MULTIPLIER = 10.0;

 MortgageDecision assess(Customer customer) {
 if (!isEligibleForMortgage(customer)) {
 return MortgageDecision.rejected();
 }
 return MortgageDecision.approve(getMaxLoanAmount(customer));
 }

 private static Boolean isEligibleForMortgage(Customer customer) {
 return customer.hasGoodCreditRating() &&
 !customer.hasExistingMortgage() &&
 !customer.isBanned();
 }

 private static MonetaryAmount getMaxLoanAmount(Customer customer) {
 return customer.getIncome()
 .minus(customer.getOutgoings())
 .multiplyBy(MORTGAGE_MULTIPLIER);
 }
}

Now imagine we go and look at the tests for this code and see only a single test case
that tests the assess() function. Listing 11.2 shows this single test case. This tests
some of the things that the assess() function does, such as the following:

 A mortgage being approved for a customer with a good credit rating, no exist-
ing mortgage, and who isn’t banned.

 The max loan amount being the customer’s income minus their outgoings,
multiplied by 10.

But it also clearly leaves a lot of things untested, such as all the reasons a mortgage
might be rejected. This is clearly an inadequate amount of testing: we could modify
the MortgageAssessor.assess() function to approve mortgages even for banned
customers and the tests would still pass!

testAssess() {
 Customer customer = new Customer(
 income: new MonetaryAmount(50000, Currency.USD),
 outgoings: new MonetaryAmount(20000, Currency.USD),
 hasGoodCreditRating: true,
 hasExistingMortgage: false,
 isBanned: false);
 MortgageAssessor mortgageAssessor = new MortgageAssessor();

 MortgageDecision decision = mortgageAssessor.assess(customer);

 assertThat(decision.isApproved()).isTrue();
 assertThat(decision.getMaxLoanAmount()).isEqualTo(
 new MonetaryAmount(300000, Currency.USD));
}

Listing 11.1 Mortgage assessment code

Listing 11.2 Mortgage assessment test

Application rejected if
the customer is ineligible

Private helper function
to determine if

customer is eligible

Private helper function to
determine max loan amount

302 CHAPTER 11 Unit testing practices
The problem here is that the engineer writing the tests has concentrated on testing
functions not behaviors. The assess() function is the only function in the public
API of the MortgageAssessor class, so they wrote only one single test case. Unfortu-
nately this one test case is nowhere near sufficient to fully ensure that the Mortgage-
Assessor.assess() function behaves in the correct way.

11.1.2 Solution: Concentrate on testing each behavior

As the previous example demonstrates, there is often not a one-to-one mapping
between functions and behaviors. If we concentrate on testing just functions, then it is
very easy to end up with a set of test cases that do not verify all the important behaviors
that we actually care about. In the example of the MortgageAssessor class there are
several behaviors that we care about, including the following:

 That a mortgage application is rejected for any customers that at least one of
the following applies to:

– They don’t have a good credit rating.
– They already have an existing mortgage.
– They are banned by the company.

 If a mortgage application is accepted, then the maximum loan amount is the
customer’s income minus their outgoings, multiplied by 10.

Each one of these behaviors should be tested, which requires writing a lot more than
one single test case. To increase our level of confidence in the code, it also makes
sense to test different values and boundary conditions, so we would probably want to
include test cases such as the following:

 A few different values for incomes and outgoings to ensure that the arithmetic
in the code is correct

 Some extreme values, such as zero income or outgoings, as well as very large
amounts of income or outgoings

It’s not unlikely that we’ll end up with 10 or more different test cases to fully test the
MortgageAssessor class. This is completely normal and expected: it’s not uncom-
mon to see 300 lines of test code for a 100-line piece of real code. It’s actually some-
times a warning sign when the amount of test code doesn’t exceed the amount of real
code, as this can suggest that not every behavior is being tested properly.

 The exercise of thinking up behaviors to test is also a great way to spot potential
problems with the code. For example, as we’re thinking of behaviors to test, we’ll
probably end up wondering what will happen if a customer’s outgoings exceed their
income. Currently the MortgageAssessor.assess() function will approve such an
application with a negative maximum loan amount. This is kind of weird functionality,
so this realization would probably prompt us to revisit the logic and handle this sce-
nario a bit more gracefully.

303Test behaviors not just functions
DOUBLE-CHECK THAT EVERY BEHAVIOR HAS BEEN TESTED

A good way to gauge whether a piece of code is tested properly is to think about how
someone could theoretically break the code and still have the tests pass. Some good
questions to ask while looking over the code are as follows. If the answer to any of
them is yes, then this suggests that not all the behaviors are being tested.

 Are there any lines of code that could be deleted and still result in the code
compiling and the tests passing?

 Could the polarity of any if-statements (or equivalent) be reversed and still result
in the tests passing (e.g., swapping if (something) { with if (!something) {)?

 Could any logical or arithmetic operators be replaced with alternatives and still
result in the tests passing? Examples of this might be swapping a && with a || or
swapping a + with a -.

 Could the values of any constants or hard-coded values be changed and still
result in the tests passing?

The point is that each line of code, if-statement, logical expression, or value in the
code under test should exist for a reason. If it genuinely is superfluous code, then it
should be removed. If it’s not superfluous, then that means that there must be some
important behavior that is somehow dependent on it. If there is an important behav-
ior that the code exhibits, then there should be a test case to test that behavior, so any
change in functionality to the code should result in at least one test case failing. If it
doesn’t, then not all the behaviors are being tested.

 The only real exception to this is code that defensively checks for programming
errors. For example, we might have a check or assertion within the code to ensure that
a particular assumption is valid. There may be no way to exercise this in a test because
the only way to test the defensive logic would be to break the assumption by breaking
the code.

 Checking that changes in functionality result in a test failure can sometimes be
automated to some extent using mutation testing. A mutation testing tool will create
versions of the code with small things mutated. If the tests still pass after the code has
been mutated, this is a sign that not every behavior is tested properly.

DON’T FORGET ABOUT ERROR SCENARIOS

Another important set of behaviors that can be easy to overlook is how the code
behaves when error scenarios occur. These can seem a bit like edge cases because we
don’t necessarily expect errors to occur that often. But how a piece of code handles
and signals different error scenarios are nonetheless important behaviors that we
(and callers of our code) care about. They should therefore be tested.

 To demonstrate this, consider listing 11.3. The BankAccount.debit() function
throws an ArgumentException if it’s called with a negative amount. The function
being called with a negative amount is an error scenario, and the fact that it throws an
ArgumentException when this happens is an important behavior. It should there-
fore be tested.

304 CHAPTER 11 Unit testing practices

class BankAccount {
 ...
 void debit(MonetaryAmount amount) {
 if (amount.isNegative()) {
 throw new ArgumentException("Amount can't be negative");
 }
 ...
 }
}

Listing 11.4 shows how we might test the behavior of the function in this error sce-
nario. The test case asserts that an ArgumentException is thrown when debit() is
called with an amount of -$0.01. It also asserts that the thrown exception contains the
expected error message.

void testDebit_negativeAmount_throwsArgumentException {
 MonetaryAmount negativeAmount =
 new MonetaryAmount(-0.01, Currency.USD);
 BankAccount bankAccount = new BankAccount();

 ArgumentException exception = assertThrows(
 ArgumentException,
 () -> bankAccount.debit(negativeAmount));
 assertThat(exception.getMessage())
 .isEqualTo("Amount can't be negative");
}

A piece of code tends to exhibit many behaviors, and it’s quite often the case that even
a single function can exhibit many different behaviors depending on the values it’s
called with or the state that the system is in. Writing just one test case per function
rarely results in an adequate amount of testing. Instead of concentrating on functions,
it’s usually more effective to identify all the behaviors that ultimately matter and
ensure that there is a test case for each of them.

11.2 Avoid making things visible just for testing
A class (or unit of code) usually has some number of functions that are visible to code
outside; we often refer to these as being public functions. This set of public functions
typically forms the public API of the code. In addition to public functions, it’s quite
common for code to also have some number of private functions. These are only visi-
ble to code within the class (or unit of code). The following snippet demonstrates this
distinction:

class MyClass {

 String publicFunction() { ... }

Listing 11.3 Code that handles an error

Listing 11.4 Testing error handling

Throws an ArgumentException
if the amount is negative

Asserts that an
ArgumentException is
thrown when debit() is called
with a negative amount

Asserts that the thrown exception
contains the expected error message

Visible to code
outside of the class

305Avoid making things visible just for testing
 private String privateFunction1 { ... }
 private String privateFunction2 { ... }
}

Private functions are implementation details, and they’re not something that code
outside the class should be aware of or ever make direct use of. Sometimes it can seem
tempting to make some of these private functions visible to the test code so that they
can be directly tested. But this is often not a good idea, as it can result in tests that are
tightly coupled to implementation details and that don’t test the things we ultimately
care about.

11.2.1 Testing private functions is often a bad idea

In the previous section, we established that it’s important to test all the behaviors of the
MortgageAssessor class (repeated in listing 11.5). The public API of this class is the
assess() function. In addition to this publicly visible function, the class also has two
private helper functions: isEligibleForMortgage() and getMaxLoanAmount().
These are not visible to any code outside of the class and are therefore implementation
details.

class MortgageAssessor {
 ...

 MortgageDecision assess(Customer customer) { ... }

 private static Boolean isEligibleForMortgage(
 Customer customer) { ... }

 private static MonetaryAmount getMaxLoanAmount(
 Customer customer) { ... }
}

Let’s concentrate on one of the behaviors of the MortgageAssessor class that we
need to test: that a mortgage application is rejected if the customer has a bad credit
rating. One common way engineers can end up testing the wrong thing is to conflate
the desired end result with an intermediate implementation detail. If we look more
closely at the MortgageAssessor class, we see that the private isEligibleFor-
Mortgage() helper function returns false if the customer has a bad credit rating.
This can make it tempting to make the isEligibleForMortgage() function visible
to test code so it can be tested. Listing 11.6 shows what the class would look like if an
engineer makes the isEligibleForMortgage() function visible like this. By mak-
ing it publicly visible, it’s visible to all other code (not just the test code). The engi-
neer has added a “Visible only for testing” comment to warn other engineers not to
call it from anything other than test code. But as we’ve seen already throughout this
book, small print like this is very easily overlooked.

Listing 11.5 Class with private helper functions

Visible only to code
within the class

Public
API

Private helper
functions

d

306 CHAPTER 11 Unit testing practices

class MortgageAssessor {
 private const Double MORTGAGE_MULTIPLIER = 10.0;

 MortgageDecision assess(Customer customer) {
 if (!isEligibleForMortgage(customer)) {
 return MortgageDecision.rejected();
 }
 return MortgageDecision.approve(getMaxLoanAmount(customer));
 }

 /** Visible only for testing */
 static Boolean isEligibleForMortgage(Customer customer) {
 return customer.hasGoodCreditRating() &&
 !customer.hasExistingMortgage() &&
 !customer.isBanned();
 }

 ...
}

After having made the isEligibleForMortgage() function visible, the engineer
would then likely write a bunch of test cases that call it and test that it returns true or
false in the correct scenarios. Listing 11.7 shows one such test case. It tests that
isEligibleForMortgage() returns false if a customer has a bad credit rating. As
we’ll see in a moment, there are a number of reasons testing a private function like
this can be a bad idea.

testIsEligibleForMortgage_badCreditRating_ineligible() {
 Customer customer = new Customer(
 income: new MonetaryAmount(50000, Currency.USD),
 outgoings: new MonetaryAmount(25000, Currency.USD),
 hasGoodCreditRating: false,
 hasExistingMortgage: false,
 isBanned: false);

 assertThat(MortgageAssessor.isEligibleForMortgage(customer))
 .isFalse();
}

The problem with making a private function visible and testing it like this is three-fold:

 The test is not actually testing the behavior we care about. We said a few
moments ago that the outcome we care about is that a mortgage application is
rejected if the customer has a bad credit rating. What the test case in listing 11.7
is actually testing is that there is a function called isEligibleForMortgage()

Listing 11.6 Private function made visible

Listing 11.7 Testing a private function

Public
API

Which helper functions are called
is an implementation detail.

Made publicly visible only
so it can be directly teste

Directly tests the “private”
isEligibleForMortgage() function

307Avoid making things visible just for testing
that returns false when called with a customer with a bad credit rating. This
doesn’t guarantee that a mortgage application will ultimately be rejected in
such a scenario. An engineer might inadvertently modify the assess() func-
tion to call isEligibleForMortgage() incorrectly (or to not call it at all).
The test case in listing 11.7 would still pass, despite the MortgageAssessor
class being badly broken.

 It makes the test non-agnostic to implementation details. The fact that there is a
private function called isEligibleForMortgage() is an implementation
detail. Engineers might want to refactor the code, for example renaming this
function or moving it to a separate helper class. Ideally, any refactoring like that
shouldn’t cause any of the tests to fail. But because we’re directly testing the
isEligibleForMortgage() function, a refactoring like that will cause the
tests to fail.

 We’ve effectively changed the public API of the MortgageAssessor class. A
comment like “Visible only for testing” is very easily overlooked (it’s small print
in the code contract), so we might find that other engineers start calling the
isEligibleForMortgage() function and relying on it. Before we know it
we’ll be unable to ever modify or refactor this function because so much other
code is depending on it.

A good unit test should test the behaviors that ultimately matter. This maximizes the
chance that the test will accurately detect breakages, and it tends to keep the test
agnostic to implementation details. These are two of the key features of a good unit
test that were identified in chapter 10. Testing a private function often goes against
both these aims. As we’ll see in the next two subsections, we can often avoid testing
private functions by either testing via the public API or by ensuring that our code is
broken into appropriate layers of abstraction.

11.2.2 Solution: Prefer testing via the public API

In the previous chapter we discussed the guiding principle of “test using only the pub-
lic API.” This principle aims to guide us toward testing the behaviors that actually mat-
ter and not implementation details. Whenever we find ourselves making an otherwise
private function visible so that tests can call it, it’s usually a red flag that we’re breaking
this guiding principle.

 In the case of the MortgageAssessor class, the behavior that actually matters is
that a mortgage application is rejected for a customer with a bad credit rating. We can
test this behavior using only the public API by calling the MortgageAsses-
sor.assess() function. Listing 11.8 shows how the test case might look if we did
this. The test case now tests the behavior that actually matters rather than an imple-
mentation detail and we no longer need to make any of the otherwise private func-
tions in the MortgageAssessor class visible.

308 CHAPTER 11 Unit testing practices

testAssess_badCreditRating_mortgageRejected() {
 Customer customer = new Customer(
 income: new MonetaryAmount(50000, Currency.USD),
 outgoings: new MonetaryAmount(25000, Currency.USD),
 hasGoodCreditRating: false,
 hasExistingMortgage: false,
 isBanned: false);
 MortgageAssessor mortgageAssessor = new MortgageAssessor();

 MortgageDecision decision = mortgageAssessor.assess(customer);

 assertThat(decision.isApproved()).isFalse();
}

For relatively simple classes (or units of code), it’s often very easy to test all the behav-
iors using only the public API. Doing this results in better tests that will more accu-
rately detect breakages and not be tied to implementation details. But when a class (or
unit of code) is more complicated or contains a lot of logic, testing everything via the
public API can start to get tricky. This is often a sign that the layer of abstraction is too
thick and that the code might benefit from being split into smaller units.

11.2.3 Solution: Split the code into smaller units

In the previous two subsections, the logic for determining if a customer has a good
credit rating was relatively simple: it just involved calling customer.hasGoodCredit-
Rating(), so it wasn’t too difficult to fully test the MortgageAssessor class using only
the public API. In reality, the temptation to make a private function visible for testing
more often occurs when a private function involves more complicated logic.

 To demonstrate this, imagine that determining whether a customer has a good
credit rating involves calling an external service and processing the result. Listing 11.9
shows what the MortgageAssessor class might look like if this were the case. The
logic for checking the customer’s credit rating is now considerably more complicated,
as noted by the following:

 The MortgageAssessor class now depends on CreditScoreService.
 CreditScoreService is queried with the customer ID in order to look up the

customer’s credit score.

Listing 11.8 Testing via the public API

Be pragmatic
Making a private function visible for testing is almost always a red flag that imple-
mentation details are being tested, and there’s usually a better alternative. But when
applying the principle of “test using only the public API” to other things (such as
dependencies), it’s important to remember the advice in chapter 10 (section 10.3).
The definition of the “public API” can be open to some amount of interpretation, and
some important behaviors (such as side effects) may fall outside of what engineers
consider the public API. But, if a behavior is important and is something that we ulti-
mately care about, then it should be tested.

Behavior
tested via the

public API

309Avoid making things visible just for testing

e
 A call to CreditScoreService.query() can fail, so the code needs to han-
dle this error scenario.

 If the call succeeds, then the returned score is compared to a threshold to
determine whether the customer’s credit rating is good.

Testing all this complexity and all these corner cases (such as error scenarios) via the
public API now seems quite daunting and not at all easy. This is when engineers most
often resort to making an otherwise private function visible in order to make the test-
ing easier. In listing 11.9, the isCreditRatingGood() function has been made “visi-
ble only for testing” for this reason. This still incurs all the same problems that we saw
earlier, but the solution of testing via the public API no longer seems so feasible due
to how complicated the logic is. But, as we’ll see in a moment, there’s a more funda-
mental problem here: the MortgageAssessor class is doing too much stuff.

class MortgageAssessor {
 private const Double MORTGAGE_MULTIPLIER = 10.0;
 private const Double GOOD_CREDIT_SCORE_THRESHOLD = 880.0;

 private final CreditScoreService creditScoreService;
 ...

 MortgageDecision assess(Customer customer) {
 ...
 }

 private Result<Boolean, Error> isEligibleForMortgage(
 Customer customer) {
 if (customer.hasExistingMortgage() || customer.isBanned()) {
 return Result.ofValue(false);
 }
 return isCreditRatingGood(customer.getId());
 }

 /** Visible only for testing */
 Result<Boolean, Error> isCreditRatingGood(Int customerId) {
 CreditScoreResponse response = creditScoreService
 .query(customerId);
 if (response.errorOccurred()) {
 return Result.ofError(response.getError());
 }
 return Result.ofValue(
 response.getCreditScore() >= GOOD_CREDIT_SCORE_THRESHOLD);
 }

 ...
}

Figure 11.1 illustrates the relationship between the test code (MortgageAssessor-
Test) and the code under test (MortgageAssessor).

Listing 11.9 More complicated credit rating check

The MortgageAssessor
class depends on
CreditScoreService.

isCreditRatingGood() function
made visible for testing

The CreditScoreService
service is queried.

The error scenario of a call to the servic
failing is signaled via a Result type.

The score is compared
to a threshold.

310 CHAPTER 11 Unit testing practices

Figure 11.1 When a class does too much, it can be difficult to test everything using only the public API.

In chapter 2, when discussing layers of abstraction, we saw how it’s often best not to
place too many different concepts into a single class. The MortgageAssessor class
contains a lot of different concepts, so in the language of chapter 2, the layer of
abstraction it provides is “too thick.” This is the real reason it seems hard to fully test
everything using the public API.

 The solution here is to split the code up into thinner layers. One way we might
achieve this is to move the logic for determining if a customer has a good credit rating
into a separate class. Listing 11.10 shows what this class might look like. The Credit-
RatingChecker class solves the subproblem of determining if a customer has a good
credit rating. The MortgageAssessor class depends on CreditRatingChecker,
meaning it’s greatly simplified, as it no longer contains all the nut-and-bolts logic for
solving subproblems.

class CreditRatingChecker {
 private const Double GOOD_CREDIT_SCORE_THRESHOLD = 880.0;

 private final CreditScoreService creditScoreService;
 ...

 Result<Boolean, Error> isCreditRatingGood(Int customerId) {
 CreditScoreService response = creditScoreService
 .query(customerId);
 if (response.errorOccurred()) {
 return Result.ofError(response.getError());
 }

Listing 11.10 Code split into two classes

MortgageAssessor

Public API
assess()

Private functions:

isEligibleForMortgage()

isCreditRatingGood()Behaviors/scenarios to test:
• Customer is eligible.
• Customer already has a mortgage.
• Customer is banned.
• CreditScoreService error.
• Credit score below threshold.
• Credit score above threshold.
• Credit score at threshold.
• Loan amount.
• Customer outgoings exceed income.

Testing all these behaviors via the public API
starts to get difficult and clunky, which can
make it tempting to test some of them via
private functions.

MortgageAssessorTest

The tests are testing
implementation details.

A separate class to
contain the logic for
checking if a credit

rating is good

311Avoid making things visible just for testing

r
 return Result.ofValue(
 response.getCreditScore() >= GOOD_CREDIT_SCORE_THRESHOLD);
 }
}

class MortgageAssessor {
 private const Double MORTGAGE_MULTIPLIER = 10.0;

 private final CreditRatingChecker creditRatingChecker;
 ...

 MortgageDecision assess(Customer customer) {
 ...
 }

 private Result<Boolean, Error> isEligibleForMortgage(
 Customer customer) {
 if (customer.hasExistingMortgage() || customer.isBanned()) {
 return Result.ofValue(false);
 }
 return creditRatingChecker
 .isCreditRatingGood(customer.getId());
 }
 ...
}

Both the MortgageAssessor and CreditRatingChecker classes deal with a much
more manageable number of concepts. This means that both can be easily tested
using their respective public APIs, as shown in figure 11.2.

Figure 11.2 Splitting a big class into smaller classes can make the code more testable.

MortgageAssesso
depends on
CreditRating
-Checker.

MortgageAssessor

Public API
assess()

Private functions:

isEligibleForMortgage()

Behaviors/scenarios to test
• Customer is eligible.
• Customer already has a mortgage.
• Customer is banned.
• Customer has bad credit rating.
• CreditRatingChecker error.
• Loan amount.
• Customer outgoings exceed income.

MortgageAssessorTest

CreditRatingChecker

Public API
isCreditRatingGood()

Behaviors/scenarios to test:
• CreditScoreService error.
• Credit score below threshold.
• Credit score above threshold.
• Credit score at threshold.

CreditRatingCheckerTest

Depends on

312 CHAPTER 11 Unit testing practices
When we find ourselves making a private function visible so that we can test the code,
it’s usually a warning sign that we’re not testing the behaviors that we actually care
about. It’s nearly always better to test the code using the already public functions. If
this is infeasible, then it’s often a sign that the class (or unit of code) is too big and
that we should think about splitting it up into smaller classes (or units) that each solve
a single subproblem.

11.3 Test one behavior at a time
As we’ve seen, there are often multiple behaviors that need to be tested for a given
piece of code. In many cases, each of these behaviors requires a slightly different sce-
nario to be set up in order to test it, meaning that the most natural thing to do is test
each scenario (and its associated behavior) in its own test case. Sometimes, however,
there may be a way to concoct a single scenario that tests multiple behaviors in one go.
But just because this might be possible doesn’t mean it’s a good idea.

11.3.1 Testing multiple behaviors at once can lead to poor tests

Listing 11.11 shows the code for a function to filter a list of coupons down to only the
valid ones. The function takes a list of candidate coupons and returns another list con-
taining only the ones that meet a set of criteria for being valid. There are a number of
important behaviors that this function exhibits:

 Only valid coupons are returned.
 A coupon is considered invalid if it has already been redeemed.
 A coupon is considered invalid if it has expired.
 A coupon is considered invalid if it was issued to a different customer than the

one given in the function call.
 The returned list of coupons is sorted in descending order of value.

List<Coupon> getValidCoupons(
 List<Coupon> coupons, Customer customer) {
 return coupons
 .filter(coupon -> !coupon.alreadyRedeemed())
 .filter(coupon -> !coupon.hasExpired())
 .filter(coupon -> coupon.issuedTo() == customer)
 .sortBy(coupon -> coupon.getValue(), SortOrder.DESCENDING);
}

As we’ve already discussed, it’s important that we test every behavior of a piece of
code, and the getValidCoupons() function is no exception to this. One approach
we might be tempted to take is to write one massive test case that tests all the function
behaviors in one go. Listing 11.12 shows what this might look like. The first thing to
notice is that it’s quite hard to understand what exactly the test case is doing. The
name testGetValidCoupons_allBehaviors is not very specific about what is

Listing 11.11 Code to get valid coupons

313Test one behavior at a time
being tested, and the amount of code in the test case makes it quite hard to follow. In
chapter 10, we identified understandable test code as one of the key features of a good
unit test. We can immediately see that testing all the behaviors in one go like this fails
that criterion.

void testGetValidCoupons_allBehaviors() {
 Customer customer1 = new Customer("test customer 1");
 Customer customer2 = new Customer("test customer 2");
 Coupon redeemed = new Coupon(
 alreadyRedeemed: true, hasExpired: false,
 issuedTo: customer1, value: 100);
 Coupon expired = new Coupon(
 alreadyRedeemed: false, hasExpired: true,
 issuedTo: customer1, value: 100);
 Coupon issuedToSomeoneElse = new Coupon(
 alreadyRedeemed: false, hasExpired: false,
 issuedTo: customer2, value: 100);
 Coupon valid1 = new Coupon(
 alreadyRedeemed: false, hasExpired: false,
 issuedTo: customer1, value: 100);
 Coupon valid2 = new Coupon(
 alreadyRedeemed: false, hasExpired: false,
 issuedTo: customer1, value: 150);

 List<Coupon> validCoupons = getValidCoupons(
 [redeemed, expired, issuedToSomeoneElse, valid1, valid2],
 customer1);

 assertThat(validCoupons)
 .containsExactly(valid2, valid1)
 .inOrder();
}

Testing all the behaviors in one go also fails another of the criteria we identified in
chapter 10: well-explained failures. To understand why, let’s consider what happens if
an engineer accidentally breaks one of the behaviors of the getValidCoupons()
function by removing the logic to check that a coupon has not already been
redeemed. The testGetValidCoupons_allBehaviors() test case will fail, which
is good (because the code is broken), but the failure message will not be particularly
helpful at explaining which behavior has been broken (figure 11.3).

 Having test code that’s hard to understand and failures that are ill explained not
only wastes other engineers’ time, but it can also increase the chance of bugs. As was
discussed in chapter 10, if any engineer is intentionally changing one of the behaviors
of the code, then we want to be sure that the other, seemingly unrelated behaviors are
not accidentally affected too. A single test case that tests everything in one go tends to
only tell us that something has changed, not exactly what has changed, so it’s much

Listing 11.12 Testing everything at once

314 CHAPTER 11 Unit testing practices
harder to have confidence about exactly which behaviors an intentional change has
and hasn’t affected.

11.3.2 Solution: Test each behavior in its own test case

A much better approach is to test each behavior separately using a dedicated, well-
named test case. Listing 11.13 shows what the test code might look like if we did this.
We can see that the code inside each test case is now a lot simpler and easier to under-
stand. We can identify from each test case name exactly which behavior is being
tested, and it’s relatively easy to follow the code to see how the test works. Judging by
the criterion that unit tests should have understandable test code, the tests are now
greatly improved.

void testGetValidCoupons_validCoupon_included() {
 Customer customer = new Customer("test customer");
 Coupon valid = new Coupon(
 alreadyRedeemed: false, hasExpired: false,
 issuedTo: customer, value: 100);

 List<Coupon> validCoupons = getValidCoupons([valid], customer);

Listing 11.13 Testing one thing at a time

Test case testGetValidCoupons_allBehaviors failed:
Expected:
 [
 Coupon(redeemed: false, expired: false,
 issuedTo: test customer 1, value: 150),
 Coupon(redeemed: false, expired: false,
 issuedTo: test customer 1, value: 100)
]
But was actually:
 [
 Coupon(redeemed: false, expired: false,
 issuedTo: test customer 1, value: 150),
 Coupon(redeemed: true, expired: false,
 issuedTo: test customer 1, value: 100),
 Coupon(redeemed: false, expired: false,
 issuedTo: test customer 1, value: 100)
]

Because the test case tests all the behaviors, we can’t identify
which behavior is broken from looking at the test case name.

It’s quite difficult to figure out which behavior
is broken from the failure message.

Figure 11.3 Testing multiple behaviors in one go can result in poorly explained test failures.

Each behavior is
tested in a dedicated
test case.

315Test one behavior at a time
 assertThat(validCoupons).containsExactly(valid);
}

void testGetValidCoupons_alreadyRedeemed_excluded() {
 Customer customer = new Customer("test customer");
 Coupon redeemed = new Coupon(
 alreadyRedeemed: true, hasExpired: false,
 issuedTo: customer, value: 100);

 List<Coupon> validCoupons =
 getValidCoupons([redeemed], customer);

 assertThat(validCoupons).isEmpty();
}

void testGetValidCoupons_expired_excluded() { ... }

void testGetValidCoupons_issuedToDifferentCustomer_excluded() { ... }

void testGetValidCoupons_returnedInDescendingValueOrder() { ... }

By testing each behavior separately and using an appropriate name for each test case,
we now also achieve well-explained failures. Let’s again consider the scenario where an
engineer accidentally breaks the getValidCoupons() function by removing the logic
to check that a coupon has not already been redeemed. This will result in the test-
GetValidCoupons_alreadyRedeemed_excluded() test case failing. The name of
this test case makes it clear exactly which behavior has been broken, and the failure
message (figure 11.4) is much easier to understand than the one we saw earlier.

 Despite the benefits of testing one thing at a time, writing a separate test case func-
tion for each behavior can sometimes lead to a lot of code duplication. This can seem
especially clunky when the values and setup used in each test case are almost identical
except for some minor differences. One way to reduce this amount of code duplica-
tion is to use parameterized tests. The next subsection explores this.

Each behavior is
tested in a

dedicated test
case.

Test case testGetValidCoupons_alreadyRedeemed_excluded failed:
Expected:
 []
But was actually:
 [
 Coupon(redeemed: true, expired: false,
 issuedTo: test customer, value: 100)
]

The name of the test case makes it immediately
clear which behavior is broken.

The failure message is much easier to understand.

Figure 11.4 Testing one behavior at a time often results in well-explained test failures.

316 CHAPTER 11 Unit testing practices

ith
11.3.3 Parameterized tests

Some testing frameworks provide functionality for writing parameterized tests; this allows
us to write a test case function once but then run it multiple times with different sets
of values in order to test different scenarios. Listing 11.14 shows how we might use a
parameterized test to test two of the behaviors of the getValidCoupons() function.
The test case function is marked with multiple TestCase attributes. Each of these
defines two Booleans and a test name. The testGetValidCoupons_excludes-
InvalidCoupons() function has two Boolean function parameters; these corre-
spond to the two Booleans defined in the TestCase attributes. When the tests run,
the test case will be run once for each of the set of parameter values defined in the
TestCase attributes.

[TestCase(true, false, TestName = "alreadyRedeemed")]
[TestCase(false, true, TestName = "expired")]
void testGetValidCoupons_excludesInvalidCoupons(
 Boolean alreadyRedeemed, Boolean hasExpired) {
 Customer customer = new Customer("test customer");
 Coupon coupon = new Coupon(
 alreadyRedeemed: alreadyRedeemed,
 hasExpired: hasExpired,
 issuedTo: customer, value: 100);

 List<Coupon> validCoupons =
 getValidCoupons([coupon], customer);

 assertThat(validCoupons).isEmpty();
}

Parameterized tests can be a great tool for ensuring that we test all the behaviors one
at a time without repeating lots of code. The syntax and way in which parameterized
tests are set up can vary a lot between different testing frameworks. Configuring
parameterized tests can also be incredibly verbose and clunky in some frameworks

Listing 11.14 Parameterized test

Ensure failures are well explained
In listing 11.14, each set of parameters has an associated TestName. This ensures
that any test failures are well explained, because it will result in messages like Test
case testGetValidCoupons_excludesInvalidCoupons.alreadyRedeemed
failed. (Notice that the test case name is suffixed with the name of the set of
parameters that resulted in the failure alreadyRedeemed.)

Adding names for each set of parameters is usually optional when writing parameter-
ized tests. But omitting them can result in poorly explained test failures, so it’s good
to think about what the test failures will look like when deciding if they’re needed.

The test case will be run once w
each set of parameter values.

The test case accepts
different values via
function parameters.

The parameter
values are used
during test setup.

317Use shared test setup appropriately
and scenarios, so it’s worth researching what the options are for whatever language
you’re using and considering the pros and cons. Some options are as follows:

 For C#, the NUnit test framework provides the TestCase attribute (similar to
the example in listing 11.14): http://mng.bz/qewE.

 For Java, JUnit provides support for parameterized tests: http://mng.bz/1Ayy.
 For JavaScript, with the Jasmine test framework it’s relatively easy to write param-

eterized tests in a bespoke way, as described in this article: http://mng.bz/PaQg.

11.4 Use shared test setup appropriately
Test cases often require some amount of setup: constructing dependencies, populat-
ing values in a test data store, or initializing other kinds of state. This setup can some-
times be quite laborious or computationally expensive, and as such many testing
frameworks provide functionality to make this easier to share between test cases.
There are usually two distinct times at which shared setup code can be configured to
run, distinguished by the following terms:

 BeforeAll—Setup code within a BeforeAll block will run once before any of
the test cases are run. Some testing frameworks refer to this as OneTimeSetUp
instead.

 BeforeEach—Setup code within a BeforeEach block will run once before
each test case is run. Some testing frameworks refer to this as just SetUp.

In addition to providing ways to run setup code, frameworks also often provide ways to
run teardown code. These are often useful for undoing any state that the setup code
or test cases may have created. And again, there are usually two distinct times at with
teardown code can be configured to run, distinguished by the following terms:

 AfterAll—Teardown code within an AfterAll block will run once after all
the test cases have run. Some testing frameworks refer to this as OneTimeTear-
Down instead.

 AfterEach—Teardown code within an AfterEach block will run once after
each test case is run. Some testing frameworks refer to this as just TearDown.

Figure 11.5 illustrates how these various pieces of setup and teardown might look in a
piece of test code and the sequence in which they will run.

 Using blocks of setup code like this results in setup being shared between different
test cases. This can happen in two important, but distinct ways:

 Sharing state—If setup code is added to a BeforeAll block, it will run once
before all test cases. This means that any state it sets up will be shared between
all the test cases. This type of setup can be useful when setup is slow or expen-
sive (e.g., starting a test server or creating a test instance of a database). But if
the state that gets set up is mutable, then there is a real risk that test cases might
have adverse effects on one another (we’ll explore this more in a moment).

http://mng.bz/1Ayy
http://mng.bz/PaQg
http://mng.bz/qewE

318 CHAPTER 11 Unit testing practices
 Sharing configuration—If setup code is added to a BeforeEach block, it will run
before each test case, meaning the test cases all share whatever configuration
the code sets up. If that setup code contains a certain value or configures a
dependency in a certain way, then each test case will run with that given value
or a dependency configured in that way. Because the setup runs before each
test case, there is no state shared between test cases. But as we’ll see in a
moment (in section 11.4.3), sharing configuration can still be problematic.

If setting up some particular state or dependency is expensive, using shared setup can
be a necessity. Even if this isn’t the case, shared setup can be a useful way to simplify
tests. If every test case requires a particular dependency, then it might be beneficial to
configure it in a shared way rather than repeating a lot of boilerplate in every test
case. But shared test setup can be a double-edged sword; using it in the wrong ways
can lead to fragile and ineffective tests.

11.4.1 Shared state can be problematic

As a general rule, test cases should be isolated from one another, so any actions that
one test case performs should not affect the outcome of other test cases. Sharing
mutable state between test cases makes it very easy to inadvertently break this rule.

class MyClassTest {

 @BeforeAll
 void oneTimeSetUp() {
 ...
 }

 @BeforeEach
 void setUp() {
 ...
 }

 @AfterEach
 void tearDown() {
 ...
 }

 @AfterAll
 void oneTimeTearDown() {
 ...
 }

 void testCase1() { ... }
 void testCase2() { ... }
}

oneTimeSetUp()

setUp()

testCase1()

tearDown()

setUp()

tearDown()

oneTimeTearDown()

testCase2()

Runs once before
any test cases

Runs once before
each test cases

Runs once after
each test cases

Runs once after
all test cases

Figure 11.5 Testing frameworks often provide a way to run setup and teardown code at various
times relative to the test cases.

319Use shared test setup appropriately
 To demonstrate this, listing 11.15 shows part of a class and function for processing
an order. The two behaviors that we’ll concentrate on are the following:

 If an order contains an out-of-stock item, the order ID will be marked as
delayed in the database.

 If payment for an order is not yet complete, the order ID will be marked as
delayed in the database.

class OrderManager {
 private final Database database;
 ...

 void processOrder(Order order) {
 if (order.containsOutOfStockItem() ||
 !order.isPaymentComplete()) {
 database.setOrderStatus(
 order.getId(), OrderStatus.DELAYED);
 }
 ...
 }
}

The unit tests should contain a test case for each of these behaviors (these are
shown in listing 11.16). The OrderManager class depends on the Database class,
so our tests need to set one of these up. Unfortunately, creating an instance of
Database is computationally expensive and slow, so we create one in a BeforeAll
block. This means that the same instance of database is shared between all the test
cases (meaning the test cases share state). Unfortunately, this also makes the tests
ineffective. To understand why, consider the sequence of events that happens when
the tests run:

 The BeforeAll block will set up the database.
 The testProcessOrder_outOfStockItem_orderDelayed() test case will

run. This results in the order ID being marked as delayed in the database.
 The testProcessOrder_paymentNotComplete_orderDelayed() test case

then runs. Anything that previous test cases put in the database is still there
(because the state is shared), so one of two things might happen:

– The code under test is called, everything works correctly, and it marks the
order ID as delayed. The test case passes.

– The code under test is called, but it’s broken. It doesn’t save anything to the
database to mark the order ID as delayed. Because the code is broken, we’d
hope that the test case fails. But it instead passes because database.get-
OrderStatus(orderId) still returns DELAYED, because the previous test
case saved that value to the database.

Listing 11.15 Code that writes to a database

320 CHAPTER 11 Unit testing practices
class OrderManagerTest {

 private Database database;

 @BeforeAll
 void oneTimeSetUp() {
 database = Database.createInstance();
 database.waitForReady();
 }

 void testProcessOrder_outOfStockItem_orderDelayed() {
 Int orderId = 12345;
 Order order = new Order(
 orderId: orderId,
 containsOutOfStockItem: true,
 isPaymentComplete: true);
 OrderManager orderManager = new OrderManager(database);

 orderManager.processOrder(order);

 assertThat(database.getOrderStatus(orderId))
 .isEqualTo(OrderStatus.DELAYED);
 }

 void testProcessOrder_paymentNotComplete_orderDelayed() {
 Int orderId = 12345;
 Order order = new Order(
 orderId: orderId,
 containsOutOfStockItem: false,
 isPaymentComplete: false);
 OrderManager orderManager = new OrderManager(database);

 orderManager.processOrder(order);

 assertThat(database.getOrderStatus(orderId))
 .isEqualTo(OrderStatus.DELAYED);
 }
 ...
}

Sharing mutable state between different test cases can very easily lead to problems. If
at all possible, it’s usually best to avoid sharing state like this. But if it is necessary, we
need to be very careful to ensure that the changes that one test case makes to the state
don’t affect other test cases.

11.4.2 Solution: Avoid sharing state or reset it

The most obvious solution to the problem of sharing mutable state is to just not share
it in the first place. In the case of the OrderManagerTest, it would be more ideal if
we didn’t share the same instance of Database between test cases, so if setting up
Database is less slow than we thought, then we might consider creating a new
instance for each test case (either within the test cases or using a BeforeEach block).

Listing 11.16 State shared between test cases

The same instance of
database is shared between
all test cases.

OrderManager
constructed with the

shared database

Results in the order ID
being marked as delayed
in the database

OrderManager
constructed with the

shared database

May pass even if the code is broken,
because the previous test case
saved this value to the database

321Use shared test setup appropriately
 Another potential way to avoid sharing mutable state is to use a test double (as dis-
cussed in chapter 10). If the team that maintains the Database class has also written a
FakeDatabase class for use in testing, we could make use of this. Creating an
instance of FakeDatabase is likely fast enough that we can create a new one for each
test case, meaning no state is shared.

 If creating an instance of Database really is prohibitively slow and expensive (and
we can’t use a fake), then sharing an instance of it between test cases might well be
unavoidable. If this is the case, we should be very careful to ensure that the state is
reset between each test case. This can often be achieved using an AfterEach block
within the test code. As mentioned previously, this will run after each test case, so we
can use it to ensure that the state is always reset before the next test case runs. The fol-
lowing listing shows what the OrderManagerTest test might look like if we use an
AfterEach block to reset the database between test cases.

class OrderManagerTest {

 private Database database;

 @BeforeAll
 void oneTimeSetUp() {
 database = Database.createInstance();
 database.waitForReady();
 }

 @AfterEach
 void tearDown() {
 database.reset();
 }

 void testProcessOrder_outOfStockItem_orderDelayed() { ... }

 void testProcessOrder_paymentNotComplete_orderDelayed() { ... }
 ...
}

NOTE: GLOBAL STATE It’s worth noting that the test code is not the only way
state can be shared between test cases. If the code under test maintains any
kind of global state, then we’ll need to ensure that the test code resets this
between test cases. Global state was discussed in chapter 9, and the conclusion
was that it’s usually best to avoid it. The impact that global state can have on
the testability of code is yet another good reason for not using it.

Sharing mutable state between test cases is less than ideal. If it can be avoided this is usu-
ally preferable. If it can’t be avoided, we should ensure that the state is reset between
each test case. This ensures that test cases don’t have adverse effects on one another.

Listing 11.17 State reset between test cases

The database is reset
after each test case.

Test cases will never be
affected by values saved

by other test cases.

322 CHAPTER 11 Unit testing practices
11.4.3 Shared configuration can be problematic

Sharing configuration between test cases doesn’t immediately seem as dangerous as
sharing state, but it can still result in ineffective tests. Imagine that another part of our
infrastructure for processing orders is a system that generates postage labels for pack-
ages. Listing 11.18 contains the function that generates the data object to represent a
postage label for an order. There are a few important behaviors that we need to test,
but the one we will concentrate on is whether the package is marked as large. The
logic for this is quite simple: if the order contains more than two items, the package is
considered large.

class OrderPostageManager {
 ...

 PostageLabel getPostageLabel(Order order) {
 return new PostageLabel(
 address: order.getCustomer().getAddress(),
 isLargePackage: order.getItems().size() > 2,
);
 }
}

If we concentrate on just the isLargePackage behavior, then we need test cases for
at least two different scenarios:

 An order containing two items. This should result in the package not being marked
as large.

 An order containing three items. This should result in the package being marked as
large.

If anyone inadvertently changes the logic in the code for deciding how many items
makes a package large, then one of these test cases should fail.

 Let’s now imagine that constructing a valid instance of the Order class is more
laborious than in previous subsections: we need to supply instances of the Item class
and an instance of the Customer class, which also means creating an instance of the
Address class. To save ourselves from repeating this configuration code in every test
case, we decide to construct an instance of Order in a BeforeEach block (which runs
once before each test case). Listing 11.19 shows what this looks like. The test case that
tests the scenario where there are three items in the order uses the instance of Order
created by the shared configuration. The testGetPostageLabel_threeItems_
largePackage() test case therefore relies on the fact that the shared configuration
creates an order containing exactly three items.

Listing 11.18 Postage label code

If the order contains more
than two items, the package
is marked as large.

323Use shared test setup appropriately

class OrderPostageManagerTest {
 private Order testOrder;

 @BeforeEach
 void setUp() {
 testOrder = new Order(
 customer: new Customer(
 address: new Address("Test address"),
),
 items: [
 new Item(name: "Test item 1"),
 new Item(name: "Test item 2"),
 new Item(name: "Test item 3"),
]);
 }
 ...

 void testGetPostageLabel_threeItems_largePackage() {
 PostageManager postageManager = new PostageManager();

 PostageLabel label =
 postageManager.getPostageLabel(testOrder);

 assertThat(label.isLargePackage()).isTrue();
 }
 ...
}

This tests one of the behaviors that we care about and avoids the need to repeat a load
of clunky code to create an Order in every test case. But, unfortunately, things might
go wrong if other engineers ever need to modify the tests. Imagine that another engi-
neer now needs to add a new piece of functionality to the getPostageLabel() func-
tion: if any of the items in the order are hazardous, the postage label needs to indicate
that the package is hazardous. The engineer modifies the getPostageLabel() func-
tion to look like the following listing.

class PostageManager {
 ...

 PostageLabel getPostageLabel(Order order) {
 return new PostageLabel(
 address: order.getCustomer().getAddress(),
 isLargePackage: order.getItems().size() > 2,
 isHazardous: containsHazardousItem(order.getItems()));
 }

 private static Boolean containsHazardousItem(List<Item> items) {
 return items.anyMatch(item -> item.isHazardous());
 }
}

Listing 11.19 Shared test configuration

Listing 11.20 A new piece of functionality

Shared
configuration

The test case relies on the fact that
the shared configuration adds
exactly three items to the order.

New functionality to
mark whether

package is
hazardous

324 CHAPTER 11 Unit testing practices
The engineer has added a new behavior to the code, so they obviously need to add new
test cases to test this. The engineer sees that there is an instance of Order constructed
in the BeforeEach block and thinks, “Oh great. I can just add a hazardous item to that
order and use that in one of my test cases.” Listing 11.21 shows the test code after they
do this. This has helped the engineer test their new behavior, but they have inadver-
tently ruined the testGetPostageLabel_threeItems_largePackage() test case.
The whole point in that test case is that it tests what happens when there are exactly
three items in the order, but it’s now testing what happens when there are four items,
so the test no longer fully protects against the code being broken.

class OrderPostageManagerTest {
 private Order testOrder;

 @BeforeEach
 void setUp() {
 testOrder = new Order(
 customer: new Customer(
 address: new Address("Test address"),
),
 items: [
 new Item(name: "Test item 1"),
 new Item(name: "Test item 2"),
 new Item(name: "Test item 3"),
 new Item(name: "Hazardous item", isHazardous: true),
]);
 }
 ...

 void testGetPostageLabel_threeItems_largePackage() { ... }

 void testGetPostageLabel_hazardousItem_isHazardous() {
 PostageManager postageManager = new PostageManager();

 PostageLabel label =
 postageManager.getPostageLabel(testOrder);

 assertThat(label.isHazardous()).isTrue();
 }
 ...
}

Listing 11.21 Bad change to shared configuration

Fourth item added
to order in shared

configuration

Now tests the case of four
items rather than intended

case of three items

New test case for
testing that the
label is marked
with hazardous

325Use shared test setup appropriately
Shared configuration can be useful for preventing code repetition, but it’s usually best
not to use it to set up any values or state that specifically matter to test cases. It’s very
hard to keep track of exactly which test cases rely on which specific things in the
shared configuration, and when changes are made in the future this can result in test
cases no longer testing the thing they are intended to test.

11.4.4 Solution: Define important configuration within test cases

It can seem laborious to repeat configuration in every test case, but when a test case
relies on specific values or state being set up, it’s often safer. And we can usually make
this less laborious by using helper functions so that we don’t have to repeat lots of boil-
erplate code.

 In the case of testing the getPostageLabel() function, creating an instance of
the Order class seemed quite clunky, but creating it in shared configuration resulted
in the problems we saw in the previous subsection. We can mostly avoid both these
issues by defining a helper function for creating an instance of Order. Individual test
cases can then call this function with the specific test values that they care about. This
avoids lots of code repetition without having to use shared configuration and suffer-
ing the problems that can come with it. The following listing shows what the test code
looks like with this approach.

Shared test constants
A BeforeEach or BeforeAll block are not the only ways to create shared test con-
figuration. Using a shared test constant can often achieve exactly the same thing and
can suffer the same set of potential problems we just discussed. If OrderPostage-
ManagerTest configured the test order in a shared constant instead of a
BeforeEach block, it might look like the following snippet:

class OrderPostageManagerTest {
 private const Order TEST_ORDER = new Order(
 customer: new Customer(
 address: new Address("Test address"),
),
 items: [
 new Item(name: "Test item 1"),
 new Item(name: "Test item 2"),
 new Item(name: "Test item 3"),
 new Item(name: "Hazardous item", isHazardous: true),
]);
 ...
}

Technically, this also shares state between test cases, but it’s good practice to only
create constants using immutable data types, meaning no mutable state is shared.
In this example, the Order class is immutable. If it were not immutable, then sharing
an instance of Order in a shared constant would probably be even more of a bad
idea (for the reasons discussed in section 11.4.1).

A shared test
constant

326 CHAPTER 11 Unit testing practices

class OrderPostageManagerTest {
 ...

 void testGetPostageLabel_threeItems_largePackage() {
 Order order = createOrderWithItems([
 new Item(name: "Test item 1"),
 new Item(name: "Test item 2"),
 new Item(name: "Test item 3"),
]);
 PostageManager postageManager = new PostageManager();

 PostageLabel label = postageManager.getPostageLabel(order);

 assertThat(label.isLargePackage()).isTrue();
 }

 void testGetPostageLabel_hazardousItem_isHazardous() {
 Order order = createOrderWithItems([
 new Item(name: "Hazardous item", isHazardous: true),
]);
 PostageManager postageManager = new PostageManager();

 PostageLabel label = postageManager.getPostageLabel(order);

 assertThat(label.isHazardous()).isTrue();
 }
 ...

 private static Order createOrderWithItems(List<Item> items) {
 return new Order(
 customer: new Customer(
 address: new Address("Test address"),
),
 items: items);
 }
}

When a piece of configuration directly matters to the outcome of a test case, it’s usu-
ally best to keep it self-contained within that test case. This defends against future
changes inadvertently ruining the tests, and it also makes the cause and effect within
each test case clear (because everything that affects a test case in a meaningful way is
there within the test case). Not every piece of configuration fits this description, how-
ever, and the next subsection discusses when shared configuration can be a good idea.

11.4.5 When shared configuration is appropriate

The previous subsections demonstrate why it’s good to be cautious about the use of
shared test configuration, but this doesn’t mean that it’s never a good idea to use it.
Some pieces of configuration are necessary but don’t directly affect the outcome of

Listing 11.22 Important configuration within test cases

Test cases
perform their
own setup for
important
things.

Helper function
for creating an
Order with
specific items

327Use shared test setup appropriately
test cases. In scenarios like this, using shared configuration can be an excellent way to
keep tests focused and understandable by avoiding unnecessary code repetition and
boilerplate.

 To demonstrate this, imagine that constructing an instance of the Order class also
requires providing some metadata about the order. The PostageManager class
ignores this metadata, so it’s completely irrelevant to the outcome of the test cases in
OrderPostageManagerTest. But it’s still something that test cases need to config-
ure, because an instance of the Order class can’t be constructed without it. In a sce-
nario like this, it makes a lot of sense to define the order metadata once as shared
configuration. Listing 11.23 demonstrates this. An instance of OrderMetadata is
placed into a shared constant called ORDER_METADATA. Test cases can then make use
of this constant instead of having to repeatedly construct this required, but otherwise
irrelevant, data.

class OrderPostageManagerTest {
 private const OrderMetadata ORDER_METADATA =
 new OrderMetadata(
 timestamp: Instant.ofEpochSecond(0),
 serverIp: new IpAddress(0, 0, 0, 0));

 void testGetPostageLabel_threeItems_largePackage() { ... }
 void testGetPostageLabel_hazardousItem_isHazardous() { ... }
 ...

 void testGetPostageLabel_containsCustomerAddress() {
 Address address = new Address("Test customer address");
 Order order = new Order(
 metadata: ORDER_METADATA,
 customer: new Customer(
 address: address,
), items: []);

 PostageLabel label = postageManager.getPostageLabel(order);

 assertThat(label.getAddress()).isEqualTo(address);
 }
 ...

 private static Order createOrderWithItems(List<Item> items) {
 return new Order(
 metadata: ORDER_METADATA,
 customer: new Customer(
 address: new Address("Test address"),
),
 items: items);
 }
}

Listing 11.23 Appropriate use of shared configuration

An instance of
OrderMetadata is created
in a shared constant.

Shared
OrderMetadata
used in test
cases

328 CHAPTER 11 Unit testing practices
Shared test setup can be a bit of a double-edged sword. It can be very useful for pre-
venting code repetition or repeatedly performing expensive setup, but it also runs the
risk of making tests ineffective and hard to reason about. It’s worth thinking carefully
to ensure that it’s used in an appropriate way.

11.5 Use appropriate assertion matchers
An assertion matcher is usually the thing in a test case that ultimately decides if the test
has passed. The following snippet contains two examples of assertion matchers
(isEqualTo() and contains()):

assertThat(someValue).isEqualTo("expected value");
assertThat(someList).contains("expected value");

If a test case fails, then the assertion matcher is also the thing that produces the failure
message to explain why. Different assertion matchers produce different failure mes-
sages (depending on what they assert). In chapter 10 we identified well-explained fail-
ures as one of the key features of a good unit test, so ensuring that we chose the most
appropriate assertion matcher is important.

11.5.1 Inappropriate matchers can lead to poorly explained failures

To demonstrate how the use of an inappropriate matcher can lead to poorly
explained test failures, we’ll concentrate on testing the code in listing 11.24. Text-
Widget is a component used in a web app UI to display text. In order to control the
styling of the component, various class names can be added to it. Some of these class
names are hard coded and other custom ones can be supplied via the constructor.
The getClassNames() function returns a combined list of all class names. An
important detail to note is that the documentation for the getClassNames() func-
tion states that the order of the returned class names is not guaranteed.

Functions should ideally take only what they need
Chapter 9 discussed how function parameters should ideally be focused, meaning
that functions take only what they need. If the tests for a piece of code require con-
figuring a lot of values that are required but otherwise irrelevant to the behavior of
the code, then it might be a sign that the function (or constructor) parameters are not
focused enough. For example, we might argue that the PostageManager.get-
PostageLabel() function should take just an instance of Address and a list of
items instead of a complete instance of the Order class. If this were the case, then
the tests would not need to create irrelevant things like an instance of Order-
Metadata.

329Use appropriate assertion matchers

class TextWidget {
 private const ImmutableList<String> STANDARD_CLASS_NAMES =
 ["text-widget", "selectable"];
 private final ImmutableList<String> customClassNames;

 TextWidget(List<String> customClassNames) {
 this.customClassNames = ImmutableList.copyOf(customClassNames);
 }

 /**
 * The class names for the component. The order of the class
 * names within the returned list is not guaranteed.
 */
 ImmutableList<String> getClassNames() {
 return STANDARD_CLASS_NAMES.concat(customClassNames);
 }

 ...
}

As we saw earlier, we should ideally aim to test one behavior at a time. One of the
behaviors that we need to test is that the list returned by getClassNames() contains
the customClassNames. One approach we might be tempted to take to test this is to
compare the returned list with an expected list of values. Listing 11.25 shows this. But
there are a couple of problems with this approach, as follows:

 The test case is testing more than it’s meant to. The name of the test case sug-
gests that it’s only testing that the result contains the custom class names. But
it’s in fact also testing that the result contains the standard class names.

 If the order in which the class names are returned ever changes, then this test
will fail. The documentation for the getClassNames() function explicitly says
that the order is not guaranteed, so we should not create a test that fails when it
changes. This could lead to false alarms or flakey tests.

void testGetClassNames_containsCustomClassNames() {
 TextWidget textWidget = new TextWidget(
 ["custom_class_1", "custom_class_2"]);

 assertThat(textWidget.getClassNames()).isEqualTo([
 "text-widget",
 "selectable",
 "custom_class_1",
 "custom_class_2",
]);
}

Let’s consider another idea we might try. Instead of comparing the returned result to
an expected list, we might individually check that the returned list contains the two

Listing 11.24 TextWidget code

Listing 11.25 Over-constrained test assertion

Hard-coded
class names

Custom class
names supplied

via the
constructor

Gets a list of all class
names (hard-coded
and custom)

330 CHAPTER 11 Unit testing practices
values we care about: custom_class_1 and custom_class_2. Listing 11.26 shows
one way we might achieve this: asserting that result.contains(...) returns true.
This has solved the two problems we just saw: the test now only tests what it’s meant to
and a change in order will not cause the test to fail. But we’ve introduced another
problem: the test failures will not be well explained (figure 11.6).

void testGetClassNames_containsCustomClassNames() {
 TextWidget textWidget = new TextWidget(
 ["custom_class_1", "custom_class_2"]);

 ImmutableList<String> result = textWidget.getClassNames();

 assertThat(result.contains("custom_class_1")).isTrue();
 assertThat(result.contains("custom_class_2")).isTrue();
}

Figure 11.6 shows what the failure message looks like if the test case fails due to one of
the custom classes being absent. It’s not obvious from this failure message how the
actual result differs from the expected one.

Figure 11.6 An inappropriate assertion matcher can result in a poorly explained
test failure.

Ensuring that a test fails when something is broken is essential, but as we saw in chap-
ter 10, it’s not the only consideration. We also want to ensure that a test only fails when
something is genuinely broken and that test failures are well explained. To achieve all
these aims, we need to choose an appropriate assertion matcher.

11.5.2 Solution: Use an appropriate matcher

Most modern test assertion tools contain myriad different matchers than can be used
in tests. One matcher on offer might be one that allows us to assert that a list contains
at least a certain set of items in an unspecified order. Examples of such matchers are
as follows:

 In Java—The containsAtLeast() matcher from the Truth library (https://
truth.dev/).

 In JavaScript—The jasmine.arrayContaining() matcher from the Jasmine
framework (https://jasmine.github.io/)

Listing 11.26 Test assertion with poor explainability

Test case testGetClassNames_containsCustomClassNames failed:
The subject was false, but was expected to be true

Failure message does little to explain the problem.

https://truth.dev/
https://truth.dev/
https://jasmine.github.io/

331Use dependency injection to aid testability
Listing 11.27 shows what our test case looks like if we use a containsAtLeast()
matcher. The test case will fail if getClassNames() fails to return any of the custom
class names. But it will not fail due to changes in other behaviors, such as the hard-
coded class names being updated or the order changing.

testGetClassNames_containsCustomClassNames() {
 TextWidget textWidget = new TextWidget(
 ["custom_class_1", "custom_class_2"]);

 assertThat(textWidget.getClassNames())
 .containsAtLeast ("custom_class_1", "custom_class_2");
}

If the test case fails, then the failure message will be well explained, as shown in figure
11.7.

Figure 11.7 An appropriate assertion matcher will produce a well-explained test failure.

In addition to producing better explained failures, using an appropriate matcher
often makes the test code slightly easier to understand. In the following snippet, the
first line of code reads more like a real sentence than the second line:

assertThat(someList).contains("expected value");
assertThat(someList.contains("expected value")).isTrue();

In addition to ensuring that a test fails when the code is broken, it’s important to
think about how a test will fail. Using an appropriate assertion matcher can often
make the difference between a well-explained test failure and a poorly explained one
that will leave other engineers scratching their heads.

11.6 Use dependency injection to aid testability
Chapters 2, 8, and 9 provided examples where the use of dependency injection
improved code. In addition to those examples, there’s another very good reason to
use dependency injection: it can make code considerably more testable.

Listing 11.27 Appropriate assertion matcher

Test case testGetClassNames_containsCustomClassNames failed:
Not true that
 [text-widget, selectable, custom_class_2]
contains at least
 [custom_class_1, custom_class_2]

missing entry: custom_class_1

Failure message gives a clear explanation of
how the actual and expected behaviors differed.

332 CHAPTER 11 Unit testing practices
 In the previous chapter, we saw how tests often need to interact with some of the
dependencies of the code under test. This occurs whenever a test needs to set up
some initial values in a dependency or verify that a side effect has occurred in one. In
addition to this, section 10.4 (chapter 10) explained how it’s sometimes necessary to
use a test double as a substitute for a real dependency. It’s therefore clear that there
are scenarios where a test will need to provide a specific instance of a dependency to
the code under test. If there’s no way for the test code to do this, it might well be
impossible to test certain behaviors.

11.6.1 Hard-coded dependencies can make code impossible to test

To demonstrate this, listing 11.28 shows a class for sending invoice reminders to cus-
tomers. The InvoiceReminder class doesn’t use dependency injection and instead
creates its own dependencies in its constructor. The AddressBook dependency is
used by the class to lookup customers’ email addresses, and the EmailSender depen-
dency is used to send emails.

class InvoiceReminder {
 private final AddressBook addressBook;
 private final EmailSender emailSender;

 InvoiceReminder() {
 this.addressBook = DataStore.getAddressBook();
 this.emailSender = new EmailSenderImpl();
 }

 @CheckReturnValue
 Boolean sendReminder(Invoice invoice) {
 EmailAddress? address =
 addressBook.lookupEmailAddress(invoice.getCustomerId());
 if (address == null) {
 return false;
 }
 return emailSender.send(
 address,
 InvoiceReminderTemplate.generate(invoice));
 }
}

There are a few behaviors that this class exhibits (such as the following), and we
should ideally test each of them:

 That the sendReminder() function sends an email to a customer when their
address is in the address book

 That the sendReminder() function returns true when an email reminder is sent
 That the sendReminder() function does not send an email when the cus-

tomer’s email address cannot be found
 That the sendReminder() function returns false when an email reminder is

not sent

Listing 11.28 Class without dependency injection

Dependencies are created
in the constructor.

Email address
looked-up using

addressBook
Email sent using
emailSender

333Use dependency injection to aid testability
Unfortunately, it’s quite difficult (and maybe even impossible) to test all these behav-
iors with the class in its current form, for the following reasons:

 The class constructs its own AddressBook by calling DataStore.getAd-
dressBook(). When the code runs in real life, this creates an AddressBook
that connects to the customer database to look up contact information. But it’s
not suitable to use this in tests, because using real customer data could lead to
flakiness as the data changes over time. Another more fundamental problem is
that the environment the test runs in probably doesn’t have permission to
access the real database, so during testing the returned AddressBook might
not even work.

 The class constructs its own EmailSenderImpl. This means the test will have
the real-world consequence of sending real emails. This is not a side effect that
a test should be causing and is an example where we need to protect the out-
side world from the test (as discussed in chapter 10).

Normally, an easy solution to both these problems would be to use a test double for
the AddressBook and the EmailSender. But in this scenario we can’t do this
because we have no way to construct an instance of the InvoiceReminder class with
test doubles instead of real dependencies. The InvoiceReminder class has poor test-
ability, and a likely consequence of this is that not all its behaviors will be tested prop-
erly, which obviously increases the chance of bugs in the code.

11.6.2 Solution: Use dependency injection

We can make the InvoiceReminder class a lot more testable and solve this problem
by using dependency injection. Listing 11.29 shows what the class looks like if we mod-
ify it so its dependencies can be injected via the constructor. The class also includes a
static factory function, so it’s still easy for real users of the class to construct it without
having to worry about dependencies.

class InvoiceReminder {
 private final AddressBook addressBook;
 private final EmailSender emailSender;

 InvoiceReminder(
 AddressBook addressBook,
 EmailSender emailSender) {
 this.addressBook = addressBook;
 this.emailSender = emailSender;
 }

 static InvoiceReminder create() {
 return new InvoiceReminder(
 DataStore.getAddressBook(),
 new EmailSenderImpl());
 }

Listing 11.29 Class with dependency injection

Dependencies
injected via the
constructor

Static factory
function

334 CHAPTER 11 Unit testing practices
 @CheckReturnValue
 Boolean sendReminder(Invoice invoice) {
 EmailAddress? address =
 addressBook.lookupEmailAddress(invoice.getCustomerId());
 if (address == null) {
 return false;
 }
 return emailSender.send(
 address,
 InvoiceReminderTemplate.generate(invoice));
 }
}

It’s now very easy for tests to construct the InvoiceReminder class using test doubles
(in this case a FakeAddressBook and a FakeEmailSender):

...
FakeAddressBook addressBook = new FakeAddressBook();
fakeAddressBook.addEntry(
 customerId: 123456,
 emailAddress: "test@example.com");
FakeEmailSender emailSender = new FakeEmailSender();

InvoiceReminder invoiceReminder =
 new InvoiceReminder(addressBook, emailSender);
...

As was mentioned in chapter 1, testability is heavily related to modularity. When differ-
ent pieces of code are loosely coupled and reconfigurable, it tends to be much easier
to test them. Dependency injection is an effective technique for making code more
modular, and as such it’s also an effective technique for making code more testable.

11.7 Some final words on testing
Software testing is a massive topic, and the things we’ve covered in these final two
chapters are just the tip of a much bigger iceberg. These chapters have looked at unit
testing, which is the level of testing that engineers usually encounter most frequently
in their everyday work. As was discussed in chapter 1, two other levels of testing that
you’re very likely to come across (and make use of) are the following:

 Integration tests—A system is usually built up of multiple components, modules,
or subsystems. The process of linking these components and subsystems
together is known as integration. Integration tests try to ensure that these inte-
grations work and stay working.

 End-to-end tests—These test typical journeys (or workflows) through a whole soft-
ware system from start to finish. If the software in question were an online shop-
ping store, then an example of an E2E test might be one that automatically
drives a web browser to ensure that a user can go through the workflow of com-
pleting a purchase.

335Summary
In addition to different levels of testing, there are many different types of testing. The
definitions of these can sometimes overlap, and engineers don’t always agree on
exactly what they mean. A by no means exhaustive list of a few concepts that it’s good
to be aware of are as follows:

 Regression testing—Tests that are regularly run in order to ensure that the behav-
ior or functionality of the software has not changed in an undesirable way. Unit
tests are usually an important part of regression testing, but it can also include
other levels of testing, such as integration tests.

 Golden testing—Sometimes referred to as characterization testing, these are usually
based on a saved snapshot of the output from the code for a given set of inputs.
If the observed output of the code ever changes, then the tests will fail. These
can be useful for ensuring that nothing has changed, but when the tests do fail
it can be difficult to determine the reason for the failure. These tests can also be
incredibly fragile and flakey in some scenarios.

 Fuzz testing—This was discussed in chapter 3. Fuzz tests call the code with lots of
random or “interesting” inputs and check that none of them cause the code to
crash.

There is a wide and varied array of techniques that engineers can use to test software.
Writing and maintaining software to a high standard often requires using a mixture of
them. Although unit testing is probably the type of testing you will come across most,
it’s unlikely that it alone will fulfill all your testing needs, so it’s well worth reading
about different types and levels of testing and keeping up to date with any new tools
and techniques.

Summary
 Concentrating on testing each function can easily lead to insufficient testing.

It’s usually more effective to identify all important behaviors and write a test
case for each.

 Test the behaviors of the code that ultimately matter. Testing private functions
is nearly always an indication that we’re not testing the things that ultimately
matter.

 Testing one thing at a time results in tests that are easier to understand, as well
as better explained test failures.

 Shared test setup can be a double-edged sword. It can avoid the repetition of
code or expensive setup, but it can also lead to ineffective or flakey tests when
used inappropriately.

 The use of dependency injection can considerably increase the testability of
code.

 Unit testing is the level of testing that engineers tend to deal with most often,
but it’s by no means the only one. Writing and maintaining software to a high
standard often requires the use of multiple testing techniques.

336 CHAPTER 11 Unit testing practices
You’ve made it to the end (and even read the chapters about testing)! I hope you’ve
enjoyed the journey through this book and learned some useful things along the way.
Now we’re done with the 11 chapters of prelude, onto the most important part of the
book: the readable version of that chocolate brownie recipe in appendix A.

337

appendix A
Chocolate brownie recipe

Chocolate Brownie Recipe

You will need the following:
100 g butter
185 g 70% dark chocolate
2 eggs
½ teaspoon vanilla essence
185 g caster sugar (or superfine sugar)
50 g flour
35 g cocoa powder
½ teaspoon salt
70 g chocolate chips

Method:
1 Preheat oven to 160°C (320°F).
2 Grease and line a small (6x6 inch) baking tin with baking paper.
3 Melt butter and dark chocolate in a bowl over a saucepan of hot water.

Once melted, take off the heat and allow to cool.
4 Mix eggs, sugar, and vanilla essence in a bowl.
5 Add the melted butter and dark chocolate to the eggs and sugar and mix.
6 In a separate bowl, mix the flour, cocoa powder, and salt and then sieve

into the eggs, sugar, butter, and chocolate. Mix just enough to fully com-
bine.

7 Add chocolate chips and mix just enough to combine.
8 Place the mix into the baking tin and bake for 20 minutes.

Allow to cool for several hours.

appendix B
Null safety and optionals

B.1 Using null safety
If the language we’re using supports null safety (and we’ve enabled it, should that
be required), there will be a mechanism for annotating types to indicate that they
can be null. This often involves a ? character to indicate nullability. Code will often
look something like the following:

Element? getFifthElement(List<Element> elements) {
 if (elements.size() < 5) {
 return null;
 }
 return elements[4];
}

If an engineer using this code forgets to handle the scenario where getFifth-
Element() returns null, their code will not compile, as demonstrated in the fol-
lowing listing:

void displayElement(Element element) { ... }

void displayFifthElement(List<Element> elements) {
 Element? fifthElement = getFifthElement(elements);
 displayElement(fifthElement);
}

To make the code compile, the engineer has to check that the value returned by
getFifthElement() is not null before using it to call a function whose parameter
is non-nullable. The compiler is able to deduce which code paths are only reach-
able when the value is non-null and thus determine if usage of the value is safe.

The ? in Element?
indicates that the
return type can be null.

The parameter to this function
is non-nullable (since the type
is Element and not Element?).

The variable
fifthElement is nullable,
as its type is Element?.

A compiler error would occur at this
line, since the function expected a

non-nullable argument yet it’s being
called with a nullable value here.
338

339Using null safety
void displayFifthElement(List<Element> elements) {
 Element? fifthElement = getFifthElement(elements);
 if (fifthElement == null) {
 displayMessage("Fifth element doesn't exist");
 return;
 }
 displayElement(fifthElement);
}

NOTE: COMPILER WARNINGS VS ERRORS In C#, using a nullable value unsafely
only results in a compiler warning and not a compiler error. If you’re using
C# and you’ve enabled null safety, it might be wise to configure your project
to upgrade these warnings to errors to ensure they don’t go unnoticed.

As we can see, with null safety we can use null values and the compiler will keep track
of when a value logically can and cannot be null, and make sure a potentially null
value is not used unsafely. This allows us to benefit from how useful null values are
without suffering the dangers of null pointer exceptions (and alike).

B.1.1 Checking for nulls

Languages with null safety often provide a succinct syntax for checking if a value is
null and only accessing a member function or property on it if it is not null. This can
eliminate a lot of boilerplate, but the pseudocode convention in this book will stick
with a more verbose form of checking for nulls to keep it analogous to a wider set of
languages that don’t offer this syntax.

 Nonetheless, to show what is meant by this, imagine there’s a function to look up
an address that returns null if no address can be found:

Address? lookupAddress() {
 ...
 return null;
 ...
}

Some code that calls this function might need to check if the return value of look-
upAddress() is null and only call a getCity() function on the address if it’s not
null. Code examples in this book will do this with a verbose if-statement to check for a
null value:

City? getCity() {
 Address? address = lookupAddress();
 if (address == null) {
 return null;
 }
 return address.getCity();
}

This if-statement means
that the function will return
early if fifthElement is null.

The compiler can deduce that
this line is only reachable if
fifthElement is non-null.

340 APPENDIX B Null safety and optionals
But be aware that most languages that support null safety also provide more compact
syntaxes for this kind of thing. For example, we would probably be able to write the
code we just saw in a more succinct way using a null conditional operator:

City? getCity() {
 return lookupAddress()?.getCity();
}

As we can see, there are multiple benefits to utilizing null safety. Not only does it make
our code less error prone, but it can also allow us to make use of other language fea-
tures to make code a lot more succinct while still being readable.

B.2 Using optional
If the language we’re using does not provide null safety, or if we can’t use it for what-
ever reason, then returning null from a function might cause a surprise for a caller. To
avoid this, we can instead use a type like Optional to force callers to be aware that
the return value might not be present.

 The code from the previous section looks like the following using an Optional
type:

Optional<Element> getFifthElement(List<Element> elements) {
 if (elements.size() < 5) {
 return Optional.empty();
 }
 return Optional.of(elements[4]);
}

An engineer using this code could then write something like the following:

void displayFifthElement(List<Element> elements) {
 Optional<Element> fifthElement = getFifthElement(elements);
 if (fifthElement.isPresent()) {
 displayElement(fifthElement.get())
 return;
 }
 displayMessage("Fifth element doesn't exist");
}

This is admittedly a little clunky, but Optional types typically provide various mem-
ber functions that can make using them a lot more succinct in some scenarios. One
example of this is an ifPresentOrElse() function (as seen in Java 9). If we rewrite
the displayFifthElement() function to use Optional.ifPresentOrElse(), it
would look like the following:

void displayFifthElement(List<Element> elements) {
 getFifthElement(elements).ifPresentOrElse(
 displayElement,
 () -> displayMessage("Fifth element doesn't exist"));
}

Checks that the
optional value
is present before
using it

The value within the
optional is accessed by calling
the get() function on it.

displayElement() is called with
the element if it is present.

The displayMessage() function is
called if the element is not present.

341Using optional
Depending on our scenario, using an Optional type can be a little verbose and
clunky, but the issue of unhandled null values can quickly become so pervasive that
the cost of the extra verbosity and clunkiness usually more than pays for itself in terms
of improved code robustness and reduced buginess.

Optional in C++
At the time of writing, the C++ standard library version of optional does not support
references, meaning it can be hard to use it for returning class-like objects. A notable
alternative is the Boost library version of optional, which does support references.
There are pros and cons to each approach (which we won’t go into here), but if you’re
considering using optional in your C++ code then it’s worth reading about the
subject:

 Standard library version of optional: http://mng.bz/n2pe
 Boost library version of optional: http://mng.bz/vem1

http://mng.bz/n2pe
http://mng.bz/vem1

appendix C
Extra code examples

C.1 The builder pattern
Chapter 7 contained a simplified implementation of the builder pattern. In reality
engineers often make use of a number of techniques and language features when
implementing the builder pattern. Listing C.11, demonstrates a more complete
implementation of the builder pattern in Java. Some things to note in this imple-
mentation are as follows:

 The TextOptions class constructor is private to force other engineers to
use the builder pattern.

 The TextOptions class constructor takes an instance of Builder as a
parameter. This makes the code a little easier to read and maintain because
it avoids very long lists of parameters and arguments.

 The TextOptions class provides a toBuilder() method that can be used
to create a prepopulated instance of the Builder class from an instance of
the TextOptions class.

 The Builder class is an inner class of the TextOptions class. This serves
two purposes:

– It makes the name spacing a little nicer, because the Builder can now be
referred to using TextOptions.Builder.

– In Java, this allows the TextOptions and Builder classes to have access
to private member variables and methods on one another.

1 Inspired by the forms of builder pattern seen in Effective Java, third edition, by Joshua Bloch (Addison-
Wesley, 2017), as well as various codebases such as the Google Guava libraries.
342

343The builder pattern
public final class TextOptions {
 private final Font font;
 private final OptionalDouble fontSize;
 private final Optional<Color> color;

 private TextOptions(Builder builder) {
 font = builder.font;
 fontSize = builder.fontSize;
 color = builder.color;
 }

 public Font getFont() {
 return font;
 }

 public OptionalDouble getFontSize() {
 return fontSize;
 }

 public Optional<Color> getColor() {
 return color;
 }

 public Builder toBuilder() {
 return new Builder(this);
 }

 public static final class Builder {
 private Font font;
 private OptionalDouble fontSize = OptionalDouble.empty();
 private Optional<Color> color = Optional.empty();

 public Builder(Font font) {
 this.font = font;
 }

 private Builder(TextOptions options) {
 font = options.font;
 fontSize = options.fontSize;
 color = options.color;
 }

 public Builder setFont(Font font) {
 this.font = font;
 return this;
 }

 public Builder setFontSize(double fontSize) {
 this.fontSize = OptionalDouble.of(fontSize);
 return this;
 }

Listing C.1 Builder pattern implementation

Constructor private and accepts
a Builder as a parameter

toBuilder() function allows creation
of a pre-populated builder.

The Builder class is an
inner class of TextOptions.

Private Builder constructor for
copying from some TextOptions

344 APPENDIX C Extra code examples
 public Builder clearFontSize() {
 fontSize = OptionalDouble.empty();
 return this;
 }

 public Builder setColor(Color color) {
 this.color = Optional.of(color);
 return this;
 }

 public Builder clearColor() {
 color = Optional.empty();
 return this;
 }

 public TextOptions build() {
 return new TextOptions(this);
 }
 }
}

Some examples of how this code might be used are as follows:

TextOptions options1 = new TextOptions.Builder(Font.ARIAL)
 .setFontSize(12.0)
 .build();

TextOptions options2 = options1.toBuilder()
 .setColor(Color.BLUE)
 .clearFontSize()
 .build();

TextOptions options3 = options2.toBuilder()
 .setFont(Font.VERDANA)
 .setColor(Color.RED)
 .build();

index
A

abstraction. See layers of abstraction
acceptance test–driven development

(ATDD) 297
adaptability 9–10

composition 222–223
making code hard to adapt 219–220

AfterAll block 317
AfterEach block 317, 321
anonymous functions 128–133

breaking into named functions 132–133
large 131–132
named functions 130–131
non-self-explanatory 129–130
using for small things 129

APIs
focusing on public API in testing 273–279
implementation details 29–30
testing via public 307–308

arguments
indecipherable 121
named 121–122

assertion matchers 328–331
inappropriate matchers 328–330
using appropriate matchers 330–331

assertions 63, 65–66
assumptions 241–245

avoiding unnecessary 242–243
enforcing 243–245
leading to bugs 241–242

ATDD (acceptance test–driven
development) 297

B

BDD (behavior-driven development) 296
BeforeAll block 317, 319
BeforeEach block 317–318, 320, 322, 324
behaviors, testing 300–304

double-checking that every behavior has been
tested 303

error scenarios 303–304
one test case per function 300–302
parameterized tests 316–317
testing multiple behaviors at once 312–314
testing one at a time 312

builder pattern 176–178, 342

C

camelCase 115
catch() function 91
checked exceptions 57, 80–82

handling checked exceptions 81–82
signaling using checked exceptions 81

@CheckReturnValue annotation 89, 97, 161
CheckReturnValue annotation 88
checks 63–65
chocolate brownie recipe 337
class inheritance 215–224

genuine is-a relationships 223–224
making code hard to adapt 219–220
preventing clean layers of abstraction 218–219
using composition instead of 220–223

adaptable code 222–223
cleaner layers of abstraction 222
345

INDEX346
classes 33–41
grouping related data into 230–232
that care about themselves 226–228

caring too much about other classes
226–227

creating 227–228
classicist 295
code contracts 55–63

eliminating small print 60–63
not relying too much on small print 58–63
small print 56–58

code quality 3–22
goals of 8–11

it should adapt to changing
requirements 9–10

it should keep working 9
it should not reinvent the wheel 10–11
it should work 8–9

pillars of 11–21, 27–28
avoiding surprises 13–15
hard to misuse 15–16
modularity 16–17, 28
readability 12–13, 27–28
reusability and generalizability 17–18, 28
testability 18–21, 28

short-term vs. long-term view of 21–22
software development 5–6

code under test 266
cohesion 33
collections

returning empty 144–145
strings as collections of characters 146–147

comments 57, 108–112
as substitute for descriptive names 106–108
as substitute for readable code 109–110
explaining why code exists 110–111
high-level summaries 111–112
redundancy 109

compiler warnings, ignoring 99–100
composition 220–223

adaptable code 222–223
cleaner layers of abstraction 222

consistency 115–117
adopting and following style guides 116–117
inconsistency and confusion 115–116

constants, well-named 126–128
helper functions 127–128
provider functions 127

copy-on-write pattern 178–181
copying

copying things before mutating 157–158
defensively copying things 183–184

D

data structures, representing time with 196–198
differentiating instant in time from amount of

time 197
time zones 198
units 197–198

data types 186–192
dedicated types 191–192
descriptive types 122–123
figuring out how to use code 53–54
overly general types 186–189
pair types 189–191
paradigms 188–189

dedicated types 191–192
deep mutability 181–186
Delegate annotation 222
dependency injection 38, 208–213

designing code with dependency injection in
mind 212–213

frameworks for 211
hard-coded dependencies 208–210
shared state 250–252
testability 331–334

hard-coded dependencies 332–333
using to aid testability 333–334

using 210–211
derived data 199
descriptive names 106–108

comments as substitute for 106–108
creating 108
nondescriptive names 106

design patterns 175–181
builder pattern 176–178, 342
copy-on-write pattern 178–181

diamond problem 223
documentation 54
Duration class 197–198
duration class 197

E

encapsulation 228–232
grouping related data into objects or

classes 230–232
unencapsulated data 228–230

end-to-end (E2E) tests 334
E2E (end-to-end) tests 20, 334

enum handling 162–168
default case 166–167
exhaustive switch statements 164–166

INDEX 347
implicitly handling future enum values
163–164

relying on another project's enum 168
errors 67–101

avoiding returning magic values 140–141
error scenarios in testing 303–304
ignoring compiler warnings 99–100
recoverability 68–71

errors that can be recovered from 68
errors that cannot be recovered from 68–69
making callers aware of errors they might

want to recover from 70–71
often only caller knows if error can be recov-

ered from 69–70
robustness vs. failure 71–79

failing fast 71–73
failing loudly 73
not hiding errors 75–79
scope of recoverability 74–75

signaling errors 79–92
exceptions 80
explicit techniques 80–82, 84–89
implicit techniques 82–84, 89–92

signaling errors that caller might want to
recover from 92–99
using explicit techniques 95–99
using unchecked exceptions 93–95

signaling errors that can't be recovered
from 92

throwing errors from default case 167
Exception class 81
exceptions

checked 80–82
handling checked exceptions 81–82
signaling using checked exceptions 81

leaking implementation details in 234–239
making exceptions appropriate to layer of

abstraction 236–239
problems with 235–236

unchecked 82–84
handling unchecked exceptions 83–84
improving code structure 93–94
pragmatism about what engineers will

do 94–95
signaling errors that caller might want to

recover from 93–95
signaling using unchecked exceptions 82

explicit error signaling techniques
checked exceptions 80–82

handling checked exceptions 81–82
signaling using checked exceptions 81

nullable return type 84–85

handling nulls 84–85
signaling using nulls 84

outcome return type 87–89
ensuring outcomes aren't ignored 88–89
handling outcomes 88
signaling using outcomes 87–88

result return type 85–87
handling results 87
signaling using results 86

signaling errors that caller might want to
recover from 95–99
errors that can't be accidentally ignored

96–97
graceful error handling 95
pragmatism about what engineers will

do 97–98

F

failing fast 63, 69
failing loudly 69, 73
fakes 291–294

decoupling tests from implementation
details 294

more realistic tests 293–294
flakey tests 269
forwarding 221
fragile base class problem 223
function calls 120–124

descriptive types 122–123
IDEs 124
indecipherable arguments 121
lack of solution 123–124
named arguments 121–122

function names 57
function parameters 257–259

making functions take only what they
need 259

problems with reusability 257–259
functional change 269
functional cohesion 33
functions 30–32

anonymous 128–133
breaking into named functions 132–133
large 131–132
non-self-explanatory 129–130
replacing with named functions 130–131
using for small things 129

breaking code into smaller 120
helper functions 127–128
named 130–133
provider functions 127

INDEX348
functions (continued)
testing private functions 305–307
that do too much 119

G

generics 259–262
problems with generalizability 260–261
using 261–262

global state 246–252
dependency injecting shared

state 250–252
problems with reusability 247–250

global variable 246
golden testing 335

H

helper functions 127–128

I

IDEs (integrated development
environments) 124

ifPresentOrElse() function 340
immutability 171–181

deep mutability 181–186
design patterns 175–181
immutable data structures 185–186
mutable classes 172–174
setting values only at construction time

174–175
ImmutableList class 185
implicit error signaling techniques

magic values 91–92
promises or futures 89–91

as implicit signaling technique 91
handling promises 90–91
making promises explicit 91
signaling using promises 90

unchecked exceptions 82–84
handling unchecked exceptions 83–84
improving code structure 93–94
pragmatism about what engineers will

do 94–95
signaling errors that caller might want to

recover from 93–95
signaling using unchecked exceptions 82

Instant class 197
Int.MAX_VALUE 142–143
Integer.MAX_VALUE 143

integers, representing time with 193–196
differentiating instant in time from amount of

time 193–194
mishandling time zones 195–196
mismatching units 194–195

integration tests 20, 334
interfaces 41–45

depending on 213–215
depending on concrete implementations

214
where possible 214–215

is-a relationships 223–224

J

jasmine.arrayContaining() function 330

L

layers of abstraction 23, 26–48
APIs and implementation details 29–30
classes 33–41
cleaner 222
functions 30–32
interfaces 41–45
making exceptions appropriate to 236–239
making return type appropriate to 233–234
microservices 47–48
pillars of code quality and 27–28

modularity 28
readability 27–28
reusability and generalizability 28
testability 28

preventing clean 218–219
reasons for creating 25–28
thinness of layers 45–46

leaking implementation details
in exceptions 234–239

making exceptions appropriate to layer of
abstraction 236–239

problems with 235–236
in return types 232–234

making return type appropriate to layer of
abstraction 233–234

problems with 232–233
LinkedList 44
List class 128
List interface 44
List.filter() function 128
LocalDateTime class 198

INDEX 349
M

magic values
avoiding returning 138–143

accidentally 141–143
leading to bugs 138–140
returning nulls, optionals, or errors 140–141

signaling errors 91–92
maximin (maximum minimum) 142
microservices 47–48
misuse of code, making difficult 15–16, 170–206

data types 186–192
dedicated types 191–192
overly general types 186–189
pair types 189–191
paradigms 188–189

defensively copying things 183–184
making things immutable 171–181

deep mutability 181–186
design patterns 175–181
immutable data structures 185–186
mutable classes 172–174
setting values only at construction time

174–175
single sources of truth for data 199–202

deriving data 201–202
invalid states 199–200
primary data as 200–202

single sources of truth for logic 202–206
time 193–198

representing with data structures 196–198
representing with integers 193–196

mixins 225
mockist 294
mocks 284–286, 288–291, 294–296

causing tight coupling between tests and
implementation details 290–291

leading to unrealistic tests 288–289
modularity 16–17, 207–239

class inheritance 215–224
genuine is-a relationships 223–224
making code hard to adapt 219–220
preventing clean layers of abstraction

218–219
using composition instead of 220–223

classes that care about themselves 226–228
caring too much about other classes

226–227
creating 227–228

dependency injection 208–213
designing code with dependency injection

in mind 212–213

frameworks for 211
hard-coded dependencies 208–210
using 210–211

depending on interfaces 213–215
depending on concrete

implementations 214
where possible 214–215

encapsulation 228–232
grouping related data into objects or

classes 230–232
unencapsulated data 228–230

layers of abstraction and 28
leaking implementation details in

exceptions 234–239
making exceptions appropriate to layer of

abstraction 236–239
problems with 235–236

leaking implementation details in return
types 232–234
making return type appropriate to layer of

abstraction 233–234
problems with 232–233

multiple inheritance 223
multithreading 154
MustUseReturnValue annotation 89
mutability 62
mutable classes 172–174
mutating input parameters 156–158

copying things before mutating 157–158
leading to bugs 156–157

mutation testing 303

N

nesting code 117–120
breaking code into smaller functions 120
deeply nested code 118
functions that do too much 119
restructuring to minimize nesting 118–119

new language features 133–135
improving code 134
obscure features 134–135
using best tool for job 135

[[nodiscard]] attribute 89
noncritical task error 68
null coalescing operator 256
null object pattern 144–150

complicated null objects 147–149
implementation 149–150
returning empty collections 144–145
returning empty strings 146–147
strings as collections of characters 146–147

INDEX350
null safety 24
nullable return type 84–85

handling nulls 84–85
signaling using nulls 84

nulls 338–341
avoiding returning magic values 140–141
checking for nulls 339–340
complicated null objects 147–149
null object pattern 76–77
null safety 338–340
pseudocode convention for 24–25

number of lines of code 112–115
succinct but unreadable code 113–114
verbosity 114–115

Number.MAX_SAFE_INTEGER 143

O

object destructuring 121
OneTimeSetUp 317
OneTimeTearDown 317
Optional.ifPresentOrElse() 340
optionals

avoiding returning magic values 140–141
using 340–341

outcome return type 87–89
ensuring outcomes aren't ignored 88–89
handling outcomes 88
signaling using outcomes 87–88

P

pair types 189–191
PascalCase 115
postcondition checks 63
postconditions 55
precondition checks 63
preconditions 55
preempting threads 154
primary data 199
private function 304
problematic hierarchies 224
promises 89–91

as implicit signaling technique 91
handling promises 90–91
making promises explicit 91
signaling using promises 90

provider functions 127
public function 29–30, 304

Q

Queue interface 44

R

readability 12–13, 105–136
anonymous functions 128–133

breaking into named functions 132–133
large 131–132
named functions 130–131
non-self-explanatory 129–130
using for small things 129

comments 108–112
as substitute for readable code 109–110
explaining why code exists 110–111
high-level summaries 111–112
redundancy 109

consistent coding style 115–117
adopting and following style guides

116–117
inconsistency and confusion 115–116

descriptive names 106–108
comments as substitute for 106–108
creating 108
nondescriptive names 106

function calls 120–124
descriptive types 122–123
IDEs 124
indecipherable arguments 121
named arguments 121–122

layers of abstraction and 27–28
nesting code 117–120

breaking code into smaller functions 120
deeply nested code 118
functions that do too much 119
restructuring to minimize nesting 118–119

new language features 133–135
improving code 134
obscure features 134–135
using best tool for job 135

number of lines of code 112–115
succinct but unreadable code 113–114
verbosity 114–115

unexplained values 124–128
confusing nature of 125–126
well-named constants 126–128

recoverability 68–71
errors that can be recovered from 68
errors that cannot be recovered from 68–69
making callers aware of errors they might want

to recover from 70–71

INDEX 351
often only caller knows if error can be recov-
ered from 69–70

scope of 74–75
signaling errors that caller might want to

recover from 92–99
explicit techniques 95–99
unchecked exceptions 93–95

signaling errors that can't be recovered
from 92

refactoring 270
regression 269
regression testing 269, 335
result return type 85–87

handling results 87
signaling using results 86

resuming threads 154
return types 57

leaking implementation details in 232–234
making return type appropriate to layer of

abstraction 233–234
problems with 232–233

result return type 85–87
return values, default 252–257

problems with reusability 253–255
providing defaults in higher level code

255–257
reusability and generalizability 17–18, 240–262

assumptions 241–245
avoiding unnecessary 242–243
enforcing 243–245
leading to bugs 241–242

default return values 252–257
problems with reusability 253–255
providing defaults in higher level code

255–257
function parameters 257–259

making functions take only what they
need 259

problems with reusability 257–259
generics 259–262

problems with generalizability 260–261
using 261–262

global state 246–252
dependency injecting shared state 250–252
problems with reusability 247–250

layers of abstraction and 28
RuntimeException exception 82

S

separation of concerns 33
sequential cohesion 33

shared test setup 317–328
avoiding or resetting 320–321
defining important configuration within test

cases 325–326
problems with 318–320
shared configuration 322–328

side effects, unexpected 150–156
avoiding or making obvious 155–156
breaking assumptions 153
bugs in multithreaded code 154–155
expensive operations 152
obvious and intentional side effects 151

signaling errors 79–92
exceptions 80
explicit techniques

checked exceptions 80–82
nullable return type 84–85
outcome return type 87–89
result return type 85–87
signaling errors that caller might want to

recover from 95–99
implicit techniques

magic values 91–92
promises or futures 89–91
unchecked exceptions 82–84, 93–95

single inheritance 224
single sources of truth

for data 199–202
deriving data 201–202
invalid states 199–200
primary data as 200–202

for logic 202–206
strings

as collections of characters 146–147
returning empty 146–147

stubs 286–291
causing tight coupling between tests and

implementation details 290–291
leading to unrealistic tests 288–289

style guides 116–117
super() function 217
surprises, avoiding 13–15, 137–169

future-proof enum handling 162–168
default case 166–167
exhaustive switch statements 164–166
implicitly handling future enum values

163–164
relying on another project's enum 168

misleading functions 158–162
doing nothing when critical input is

missing 159–161
making critical inputs required 161–162

INDEX352
surprises, avoiding (continued)
mutating input parameters 156–158

copying things before mutating 157–158
leading to bugs 156–157

null object pattern 144–150
complicated null objects 147–149
implementation 149–150
returning empty collections 144–145
returning empty strings 146–147

returning magic values 138–143
accidentally 141–143
leading to bugs 138–140
returning nulls, optionals, or errors 140–141

testing and 168–169
unexpected side effects 150–156

avoiding or making obvious 155–156
breaking assumptions 153
bugs in multithreaded code 154–155
expensive operations 152
obvious and intentional side effects 151

switch statements
default case 166–167
exhaustive 164–166
throwing errors from default case 167

T

TDD (test-driven development) 296
TearDown 317
test doubles 279–296

fakes 291–294
decoupling tests from implementation

details 294
more realistic tests 293–294

mocks 284–286, 288–291, 294–296
causing tight coupling between tests and

implementation details 290–291
leading to unrealistic tests 288–289

reasons for using 279–284
protecting outside world from tests 281–283
protecting tests from outside world 283–284
simplifying tests 279–280

stubs 286–291
causing tight coupling between tests and

implementation details 290–291
leading to unrealistic tests 288–289

test runner 267
testability

dependency injection 331–334
hard-coded dependencies 332–333
using to aid testability 333–334

TestCase attribute 316–317

testing 18–21, 265–336
assertion matchers 328–331

inappropriate matchers 328–330
using appropriate matchers 330–331

characteristics of good unit tests 268–273
accurately detecting breakages 268–269
agnostic to implementation details 269–271
easy and quick to run 273
understandable test code 272–273
well-explained failures 271–272

choosing from testing philosophies 296–297
focusing on public API 273–279
layers of abstraction and 28
making things visible just for testing 304–312

splitting code into smaller units 308–312
testing private functions 305–307
testing via public API 307–308

overview 266–268
shared test setup 317–328

avoiding or resetting 320–321
defining important configuration within test

cases 325–326
problems with 318–320
shared configuration 322–328

test doubles 279–296
fakes 291–294
mocks 284–286, 288–291, 294–296
reasons for using 279–284
stubs 286–291

testing behaviors 300–304
double-checking that every behavior has

been tested 303
error scenarios 303–304
one test case per function 300–302

testing one behavior at time 312
parameterized tests 316–317
testing multiple behaviors at once 312–314

then() function 90–91
time 193–198

representing with data structures 196–198
differentiating instant in time from amount

of time 197
time zones 198
units 197–198

representing with integers 193–196
differentiating instant in time from amount

of time 193–194
mishandling time zones 195–196
mismatching units 194–195

time zones
representing time with data structures 198
representing time with integers 195–196

INDEX 353
time_point class 197
traits 225

U

unchecked exceptions 58, 82–84
handling unchecked exceptions 83–84
improving code structure 93–94
pragmatism about what engineers will do

94–95
signaling errors that caller might want to

recover from 93–95
signaling using unchecked exceptions 82

unexplained values 124–128

confusing nature of 125–126
well-named constants 126–128

helper functions 127–128
provider functions 127

unit of code 266
unit tests 20, 265–336

V

visibility, for testing 304–312
splitting code into smaller units 308–312
testing private functions 305–307
testing via public API 307–308

void safety 24

A new online reading experience

liveBook, our online reading platform, adds a new dimension to your Manning books,

with features that make reading, learning, and sharing easier than ever. A liveBook

version of your book is included FREE with every Manning book.

This next generation book platform is more than an online reader. It’s packed with

unique features to upgrade and enhance your learning experience.

• Add your own notes and bookmarks

• One-click code copy

• Learn from other readers in the discussion forum

• Audio recordings and interactive exercises

• Read all your purchased Manning content in any browser, anytime, anywhere

As an added bonus, you can search every Manning book and video in liveBook—even

ones you don’t yet own. Open any liveBook, and you’ll be able to browse the content and

read anything you like.*

Find out more at www.manning.com/livebook-program.
*Open reading is limited to 10 minutes per book daily

303

CONTRACT

!

Good code checklist (things to consider)
High-level considerations

Does the code create clean layers of abstraction?
• Implementation details hidden? (section 2.3.1)

• Functions appropriately sized? (section 2.3.2)

• Classes appropriately sized? (section 2.3.3)

• Interfaces where appropriate? (section 3.2.4)

More specific considerations

Is the code contract clear?
• Amount of small print minimized? (section 3.3.2) • Small print enforced? (section 3.4)

Are errors signaled and handled appropriately?
• Can errors be recovered from? (section 4.1)

• Code fails fast when error occurs? (section 4.2.1)

• Errors won’t go unnoticed? (sections 4.2.2–4.2.4)

• Implicit or explicit signaling? (sections 4.3–4.5)

Is the code readable?
• Self-explanatory and consistent? (sections 5.1–5.4)

• Avoids deep nesting (or indentation)? (section 5.5)

• Function calls easy to decipher? (section 5.6)

• Values and constants explained? (section 5.7)

• Large anonymous functions avoided? (section 5.8)

• Shiny features used for right reasons? (section 5.9)

Does the code avoid surprises?
• Surprising return values avoided? (sections 6.1–6.2)

• Unexpected side effects avoided? (sections 6.3–6.4)

• Functions always do what they claim? (section 6.5)

• Handling of enums future-proofed? (section 6.6)

Is the code hard to misuse?
• Things sufficiently immutable? (sections 7.1–7.2)

• Overly general data types avoided? (sections 7.3–7.4)

• Single sources of truth? (sections 7.5–7.6)

• Dependency injection used? (section 8.1)

• Overuse of class inheritance avoided? (section 8.3)

• Classes care only about themselves? (section 8.4)

Is the code sufficiently modular?
• Related data encapsulated together? (section 8.5)

• Implementation details not leaked? (sections 8.6–8.7)

Is the code reusable and generalizable?
• Brittle assumptions avoided? (section 9.1)

• Global state minimized? (section 9.2)

• Default values considered carefully? (section 9.3)

• Generic types where appropriate? (section 9.5)

Is the code tested properly?
• Accurate detection of breakages? (section 10.2.1)

• Agnostic to implementation? (sections 10.2.2, 10.3)

• Well-explained failures? (section 10.2.3)

• Test doubles used appropriately? (section 10.4)

• Every behavior tested? (section 11.1)

• All levels of testing considered? (section 11.7)

Tom Long

ISBN: 978-1-61729-893-6

S
oftware development is a team sport. For an applica-
tion to succeed, your code needs to be robust and easy
for others to understand, maintain, and adapt. Whether

you’re working on an enterprise team, contributing to an open
source project, or bootstrapping a startup, it pays to know the
diff erence between good code and bad code.

Good Code, Bad Code is a clear, practical introduction to writing
code that’s a snap to read, apply, and remember. With dozens
of instantly-useful techniques, you’ll fi nd coding insights that
normally take years of experience to master. In this fast-paced
guide, Google software engineer Tom Long teaches you a host
of rules to apply, along with advice on when to break them!

What’s Inside
● Write functions that read like sentences
● Ensure your code stays bug-free
● How to sniff out bad code
● Save time for yourself and your team

For coders early in their careers who are familiar with an
object-oriented language, such as Java or C#.

Tom Long is a software engineer at Google where he works as a
tech lead. Among other tasks, he regularly mentors new soft-
ware engineers in professional coding best practices.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$49.99 / Can $65.99 [INCLUDING eBOOK]

Good Code, Bad Code

PROGRAMMING/SOFTWARE ENGINEERING

M A N N I N G

“A wealth of knowledge to
 sharpen your toolset.”

—Joe Ivans
California Regional MLS

“Pragmatic advice and
useful tips for a career

 in software development.”
—George Th omas

Manhattan Associates

“A practical, informative
book designed to help

developers write high-quality,
eff ective code.”

—Christopher Villanueva
Independent Consultant

“Smart, well written, action-
able information for creating

maintainable code.”—Hawley Waldman, Consultant

See first page

	Good Code, Bad Code
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	How to use the advice in this book
	Further reading

	about the author
	about the cover illustration
	Part 1 In theory
	1 Code quality
	1.1 How code becomes software
	1.2 The goals of code quality
	1.2.1 Code should work
	1.2.2 Code should keep working
	1.2.3 Code should be adaptable to changing requirements
	1.2.4 Code should not reinvent the wheel

	1.3 The pillars of code quality
	1.3.1 Make code readable
	1.3.2 Avoid surprises
	1.3.3 Make code hard to misuse
	1.3.4 Make code modular
	1.3.5 Make code reusable and generalizable
	1.3.6 Make code testable and test it properly

	1.4 Does writing high-quality code slow us down?
	Summary

	2 Layers of abstraction
	2.1 Nulls and the pseudocode convention in this book
	2.2 Why create layers of abstraction?
	2.2.1 Layers of abstraction and the pillars of code quality

	2.3 Layers of code
	2.3.1 APIs and implementation details
	2.3.2 Functions
	2.3.3 Classes
	2.3.4 Interfaces
	2.3.5 When layers get too thin

	2.4 What about microservices?
	Summary

	3 Other engineers and code contracts
	3.1 Your code and other engineers’ code
	3.1.1 Things that are obvious to you are not obvious to others
	3.1.2 Other engineers will inadvertently try to break your code
	3.1.3 In time, you will forget about your own code

	3.2 How will others figure out how to use your code?
	3.2.1 Looking at the names of things
	3.2.2 Looking at the data types of things
	3.2.3 Reading documentation
	3.2.4 Asking you in person
	3.2.5 Looking at your code

	3.3 Code contracts
	3.3.1 Small print in contracts
	3.3.2 Don’t rely too much on small print

	3.4 Checks and assertions
	3.4.1 Checks
	3.4.2 Assertions

	Summary

	4 Errors
	4.1 Recoverability
	4.1.1 Errors that can be recovered from
	4.1.2 Errors that cannot be recovered from
	4.1.3 Often only the caller knows if an error can be recovered from
	4.1.4 Make callers aware of errors they might want to recover from

	4.2 Robustness vs. failure
	4.2.1 Fail fast
	4.2.2 Fail loudly
	4.2.3 Scope of recoverability
	4.2.4 Don’t hide errors

	4.3 Ways of signaling errors
	4.3.1 Recap: Exceptions
	4.3.2 Explicit: Checked exceptions
	4.3.3 Implicit: Unchecked exceptions
	4.3.4 Explicit: Nullable return type
	4.3.5 Explicit: Result return type
	4.3.6 Explicit: Outcome return type
	4.3.7 Implicit: Promise or future
	4.3.8 Implicit: Returning a magic value

	4.4 Signaling errors that can’t be recovered from
	4.5 Signaling errors that a caller might want to recover from
	4.5.1 Arguments for using unchecked exceptions
	4.5.2 Arguments for using explicit techniques
	4.5.3 My opinion: Use an explicit technique

	4.6 Don’t ignore compiler warnings
	Summary

	Part 2 In practice
	5 Make code readable
	5.1 Use descriptive names
	5.1.1 Nondescriptive names make code hard to read
	5.1.2 Comments are a poor substitute for descriptive names
	5.1.3 Solution: Make names descriptive

	5.2 Use comments appropriately
	5.2.1 Redundant comments can be harmful
	5.2.2 Comments are a poor substitute for readable code
	5.2.3 Comments can be great for explaining why code exists
	5.2.4 Comments can provide useful high-level summaries

	5.3 Don’t fixate on number of lines of code
	5.3.1 Avoid succinct but unreadable code
	5.3.2 Solution: Make code readable, even if it requires more lines

	5.4 Stick to a consistent coding style
	5.4.1 An inconsistent coding style can cause confusion
	5.4.2 Solution: Adopt and follow a style guide

	5.5 Avoid deeply nesting code
	5.5.1 Deeply nested code can be hard to read
	5.5.2 Solution: Restructure to minimize nesting
	5.5.3 Nesting is often a result of doing too much
	5.5.4 Solution: Break code into smaller functions

	5.6 Make function calls readable
	5.6.1 Arguments can be hard to decipher
	5.6.2 Solution: Use named arguments
	5.6.3 Solution: Use descriptive types
	5.6.4 Sometimes there’s no great solution
	5.6.5 What about the IDE?

	5.7 Avoid using unexplained values
	5.7.1 Unexplained values can be confusing
	5.7.2 Solution: Use a well-named constant
	5.7.3 Solution: Use a well-named function

	5.8 Use anonymous functions appropriately
	5.8.1 Anonymous functions can be great for small things
	5.8.2 Anonymous functions can be hard to read
	5.8.3 Solution: Use named functions instead
	5.8.4 Large anonymous functions can be problematic
	5.8.5 Solution: Break large anonymous functions into named functions

	5.9 Use shiny, new language features appropriately
	5.9.1 New features can improve code
	5.9.2 Obscure features can be confusing
	5.9.3 Use the best tool for the job

	Summary

	6 Avoid surprises
	6.1 Avoid returning magic values
	6.1.1 Magic values can lead to bugs
	6.1.2 Solution: Return null, an optional, or an error
	6.1.3 Sometimes magic values can happen accidentally

	6.2 Use the null object pattern appropriately
	6.2.1 Returning an empty collection can improve code
	6.2.2 Returning an empty string can sometimes be problematic
	6.2.3 More complicated null objects can cause surprises
	6.2.4 A null object implementation can cause surprises

	6.3 Avoid causing unexpected side effects
	6.3.1 Side effects that are obvious and intentional are fine
	6.3.2 Unexpected side effects can be problematic
	6.3.3 Solution: Avoid a side effect or make it obvious

	6.4 Beware of mutating input parameters
	6.4.1 Mutating an input parameter can lead to bugs
	6.4.2 Solution: Copy things before mutating them

	6.5 Avoid writing misleading functions
	6.5.1 Doing nothing when a critical input is missing can cause surprises
	6.5.2 Solution: Make critical inputs required

	6.6 Future-proof enum handling
	6.6.1 Implicitly handling future enum values can be problematic
	6.6.2 Solution: Use an exhaustive switch statement
	6.6.3 Beware of the default case
	6.6.4 Caveat: Relying on another project’s enum

	6.7 Can’t we just solve all this with testing?
	Summary

	7 Make code hard to misuse
	7.1 Consider making things immutable
	7.1.1 Mutable classes can be easy to misuse
	7.1.2 Solution: Set values only at construction time
	7.1.3 Solution: Use a design pattern for immutability

	7.2 Consider making things deeply immutable
	7.2.1 Deep mutability can lead to misuse
	7.2.2 Solution: Defensively copy things
	7.2.3 Solution: Use immutable data structures

	7.3 Avoid overly general data types
	7.3.1 Overly general types can be misused
	7.3.2 Pair types are easy to misuse
	7.3.3 Solution: Use a dedicated type

	7.4 Dealing with time
	7.4.1 Representing time with integers can be problematic
	7.4.2 Solution: Use appropriate data structures for time

	7.5 Have single sources of truth for data
	7.5.1 Second sources of truth can lead to invalid states
	7.5.2 Solution: Use primary data as the single source of truth

	7.6 Have single sources of truth for logic
	7.6.1 Multiple sources of truth for logic can lead to bugs
	7.6.2 Solution: Have a single source of truth

	Summary

	8 Make code modular
	8.1 Consider using dependency injection
	8.1.1 Hard-coded dependencies can be problematic
	8.1.2 Solution: Use dependency injection
	8.1.3 Design code with dependency injection in mind

	8.2 Prefer depending on interfaces
	8.2.1 Depending on concrete implementations limits adaptability
	8.2.2 Solution: Depend on interfaces where possible

	8.3 Beware of class inheritance
	8.3.1 Class inheritance can be problematic
	8.3.2 Solution: Use composition
	8.3.3 What about genuine is-a relationships?

	8.4 Classes should care about themselves
	8.4.1 Caring too much about other classes can be problematic
	8.4.2 Solution: Make classes care about themselves

	8.5 Encapsulate related data together
	8.5.1 Unencapsulated data can be difficult to handle
	8.5.2 Solution: Group related data into objects or classes

	8.6 Beware of leaking implementation details in return types
	8.6.1 Leaking implementation details in a return type can be problematic
	8.6.2 Solution: Return a type appropriate to the layer of abstraction

	8.7 Beware of leaking implementation details in exceptions
	8.7.1 Leaking implementation details in exceptions can be problematic
	8.7.2 Solution: Make exceptions appropriate to the layer of abstraction

	Summary

	9 Make code reusable and generalizable
	9.1 Beware of assumptions
	9.1.1 Assumptions can lead to bugs when code is reused
	9.1.2 Solution: Avoid unnecessary assumptions
	9.1.3 Solution: If an assumption is necessary, enforce it

	9.2 Beware of global state
	9.2.1 Global state can make reuse unsafe
	9.2.2 Solution: Dependency-inject shared state

	9.3 Use default return values appropriately
	9.3.1 Default return values in low-level code can harm reusability
	9.3.2 Solution: Provide defaults in higher level code

	9.4 Keep function parameters focused
	9.4.1 A function that takes more than it needs can be hard to reuse
	9.4.2 Solution: Make functions take only what they need

	9.5 Consider using generics
	9.5.1 Depending on a specific type limits generalizability
	9.5.2 Solution: Use generics

	Summary

	Part 3 Unit testing
	10 Unit testing principles
	10.1 Unit testing primer
	10.2 What makes a good unit test?
	10.2.1 Accurately detects breakages
	10.2.2 Agnostic to implementation details
	10.2.3 Well-explained failures
	10.2.4 Understandable test code
	10.2.5 Easy and quick to run

	10.3 Focus on the public API but don’t ignore important behaviors
	10.3.1 Important behaviors might be outside the public API

	10.4 Test doubles
	10.4.1 Reasons for using a test double
	10.4.2 Mocks
	10.4.3 Stubs
	10.4.4 Mocks and stubs can be problematic
	10.4.5 Fakes
	10.4.6 Schools of thought on mocking

	10.5 Pick and choose from testing philosophies
	Summary

	11 Unit testing practices
	11.1 Test behaviors not just functions
	11.1.1 One test case per function is often inadequate
	11.1.2 Solution: Concentrate on testing each behavior

	11.2 Avoid making things visible just for testing
	11.2.1 Testing private functions is often a bad idea
	11.2.2 Solution: Prefer testing via the public API
	11.2.3 Solution: Split the code into smaller units

	11.3 Test one behavior at a time
	11.3.1 Testing multiple behaviors at once can lead to poor tests
	11.3.2 Solution: Test each behavior in its own test case
	11.3.3 Parameterized tests

	11.4 Use shared test setup appropriately
	11.4.1 Shared state can be problematic
	11.4.2 Solution: Avoid sharing state or reset it
	11.4.3 Shared configuration can be problematic
	11.4.4 Solution: Define important configuration within test cases
	11.4.5 When shared configuration is appropriate

	11.5 Use appropriate assertion matchers
	11.5.1 Inappropriate matchers can lead to poorly explained failures
	11.5.2 Solution: Use an appropriate matcher

	11.6 Use dependency injection to aid testability
	11.6.1 Hard-coded dependencies can make code impossible to test
	11.6.2 Solution: Use dependency injection

	11.7 Some final words on testing
	Summary

	appendix A Chocolate brownie recipe
	appendix B Null safety and optionals
	B.1 Using null safety
	B.1.1 Checking for nulls

	B.2 Using optional

	appendix C Extra code examples
	C.1 The builder pattern

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Good Code, Bad Code - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CombiNumerals-Solid
 /HumanistMann521-BoldCondensed
 /Univers
 /Univers-Light
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

